Citation: | LI W L, JIN X J, YU J L, et al. Deep Learning Detection of Weeds in Vegetable Fields [J]. Fujian Journal of Agricultural Sciences,2024,39(2):199−205 doi: 10.19303/j.issn.1008-0384.2024.02.010 |
[1] |
金月, 肖宏儒, 曹光乔, 等. 我国叶类蔬菜机械化水平现状与评价方法研究 [J]. 中国农机化学报, 2020, 41(12):196−201.
JIN Y, XIAO H R, CAO G Q, et al. Research on status and evaluation methods of leafy vegetable mechanization production level in China [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(12): 196−201. (in Chinese)
|
[2] |
中华人民共和国国家统计局. 农业年度数据 [EB/OL]. http://data.stats.gov.cn/easyquery.htm?cn=C01.
|
[3] |
刘文, 徐丽明, 邢洁洁, 等. 作物株间机械除草技术的研究现状 [J]. 农机化研究, 2017, 39(1):243−250.
LIU W, XU L M, XING J J, et al. Research status of mechanical intra-row weed control in row crops [J]. Journal of Agricultural Mechanization Research, 2017, 39(1): 243−250. (in Chinese)
|
[4] |
强胜. 我国杂草学研究现状及其发展策略 [J]. 植物保护, 2010, 36(4):1−5. doi: 10.3969/j.issn.0529-1542.2010.04.001
QIANG S. Current status and development strategy for weed science in China [J]. Plant Protection, 2010, 36(4): 1−5. (in Chinese) doi: 10.3969/j.issn.0529-1542.2010.04.001
|
[5] |
陈德润, 王书茂, 王秀. 农田杂草识别技术的现状与展望 [J]. 中国农机化, 2005, 26(2):35−38.
CHEN D R, WANG S M, WANG X. Status and prospect for recognition technology of farm weeds [J]. Chinese Agriculture Mechanization, 2005, 26(2): 35−38. (in Chinese)
|
[6] |
何义川, 汤智辉, 李光新, 等. 葡萄园除草技术研究现状与发展趋势 [J]. 中国农机化学报, 2018, 39(9):34−37.
HE Y C, TANG Z H, LI G X, et al. Research on current status and developing tendency of the vineyard weeding [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(9): 34−37. (in Chinese)
|
[7] |
李东升, 张莲洁, 盖志武, 等. 国内外除草技术研究现状 [J]. 森林工程, 2002, 18(1):17−18.
LI D S, ZHANG L J, GAI Z W, et al. Research situations of weeding techniques in abroad and home [J]. Forest Engineering, 2002, 18(1): 17−18. (in Chinese)
|
[8] |
洪晓玮, 陈勇, 杨超淞, 等. 有机蔬菜大棚除草机器人研制 [J]. 制造业自动化, 2021, 43(5):33−36,71.
HONG X W, CHEN Y, YANG C S, et al. Development of a weeding robot for organic vegetable greenhouse [J]. Manufacturing Automation, 2021, 43(5): 33−36,71. (in Chinese)
|
[9] |
HASANUZZAMAN M, MOHSIN S M, BHUYAN M H M B, et al. Phytotoxicity, environmental and health hazards of herbicides: Challenges and ways forward[M]//Agrochemicals Detection, Treatment and Remediation. Amsterdam: Elsevier, 2020: 55-99.
|
[10] |
何荣昌. 浅析农田除草剂对土壤生态环境的影响 [J]. 南方农业, 2019, 13(6):187−188.
HE R C. Analysis on the influence of herbicide on soil ecological environment in farmland [J]. South China Agriculture, 2019, 13(6): 187−188. (in Chinese)
|
[11] |
东辉, 陈鑫凯, 孙浩, 等. 基于改进YOLOv4和图像处理的蔬菜田杂草检测 [J]. 图学学报, 2022, 43(4):559−569.
DONG H, CHEN X K, SUN H, et al. Weed detection in vegetable field based on improved YOLOv4 and image processing [J]. Journal of Graphics, 2022, 43(4): 559−569. (in Chinese)
|
[12] |
兰天, 李端玲, 张忠海, 等. 智能农业除草机器人研究现状与趋势分析 [J]. 计算机测量与控制, 2021, 29(5):1−7.
LAN T, LI D L, ZHANG Z H, et al. Analysis on research status and trend of intelligent agricultural weeding robot [J]. Computer Measurement & Control, 2021, 29(5): 1−7. (in Chinese)
|
[13] |
马娟, 董金皋. 微生物除草剂与生物安全 [J]. 植物保护, 2006, 32(1):9−12.
MA J, DONG J G. Microbial herbicides and biosafety [J]. Plant Protection, 2006, 32(1): 9−12. (in Chinese)
|
[14] |
金小俊, 孙艳霞, 陈勇, 等. 基于深度学习的草坪杂草识别与除草剂喷施区域检测方法 [J]. 草地学报, 2022, 30(6):1543−1549.
JIN X J, SUN Y X, CHEN Y, et al. Weed recognition and herbicide spraying area detection in turf based on deep learning [J]. Acta Agrestia Sinica, 2022, 30(6): 1543−1549. (in Chinese)
|
[15] |
孙艳霞, 陈燕飞, 金小俊, 等. 基于人工智能的青菜幼苗与杂草识别方法 [J]. 福建农业学报, 2021, 36(12):1484−1490.
SUN Y X, CHEN Y F, JIN X J, et al. AI differentiation of Bok choy seedlings from weeds [J]. Fujian Journal of Agricultural Sciences, 2021, 36(12): 1484−1490. (in Chinese)
|
[16] |
朱伟兴, 金飞剑, 谈蓉蓉. 基于颜色特征与多层同质性分割算法的麦田杂草识别[J]. 农业机械学报, 2007, 38(12): 120−124.
ZHU W X, JIN F J, TAN R R. Weed recognition method based on color feature and hierarchical homogeneity segmentation in wheat field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(12): 120−124. (in Chinese)
|
[17] |
BURGOS-ARTIZZU X P, RIBEIRO A, GUIJARRO M, et al. Original paper: Real-time image processing for crop/weed discrimination in maize fields [J]. Computers and Electronics in Agriculture, 2011, 75(2): 337−346.
|
[18] |
BAKHSHIPOUR A, JAFARI A, NASSIRI S M, et al. Weed segmentation using texture features extracted from wavelet sub-images [J]. Biosystems Engineering, 2017, 157: 1−12. doi: 10.1016/j.biosystemseng.2017.02.002
|
[19] |
杨涛, 李晓晓. 机器视觉技术在现代农业生产中的研究进展 [J]. 中国农机化学报, 2021, 42(3):171−181.
YANG T, LI X X. Research progress of machine vision technology in modern agricultural production [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 171−181. (in Chinese)
|
[20] |
赵娜, 赵平, 高轶军. 机器视觉技术在我国现代农业生产中的应用研究 [J]. 天津农学院学报, 2015, 22(2):55−58.
ZHAO N, ZHAO P, GAO Y J. Study on application of machine vision technology to modern agriculture in China [J]. Journal of Tianjin Agricultural University, 2015, 22(2): 55−58. (in Chinese)
|
[21] |
刘现, 郑回勇, 施能强, 等. 人工智能在农业生产中的应用进展 [J]. 福建农业学报, 2013, 28(6):609−614.
LIU X, ZHENG H Y, SHI N Q, et al. Artificial intelligence in agricultural applications [J]. Fujian Journal of Agricultural Sciences, 2013, 28(6): 609−614. (in Chinese)
|
[22] |
OSORIO K, PUERTO A, PEDRAZA C, et al. A deep learning approach for weed detection in lettuce crops using multispectral images [J]. AgriEngineering, 2020, 2(3): 471−488. doi: 10.3390/agriengineering2030032
|
[23] |
彭文, 兰玉彬, 岳学军, 等. 基于深度卷积神经网络的水稻田杂草识别研究 [J]. 华南农业大学学报, 2020, 41(6):75−81. doi: 10.7671/j.issn.1001-411X.202007029
PENG W, LAN Y B, YUE X J, et al. Research on paddy weed recognition based on deep convolutional neural network [J]. Journal of South China Agricultural University, 2020, 41(6): 75−81. (in Chinese) doi: 10.7671/j.issn.1001-411X.202007029
|
[24] |
YU J L, SCHUMANN A W, SHARPE S M, et al. Detection of grassy weeds in bermudagrass with deep convolutional neural networks [J]. Weed Science, 2020, 68(5): 545−552. doi: 10.1017/wsc.2020.46
|
[25] |
YU J L, SHARPE S M, SCHUMANN A W, et al. Deep learning for image-based weed detection in turfgrass [J]. European Journal of Agronomy, 2019, 104: 78−84. doi: 10.1016/j.eja.2019.01.004
|
[26] |
YU J L, SCHUMANN A W, CAO Z, et al. Weed detection in perennial ryegrass with deep learning convolutional neural network [J]. Frontiers in Plant Science, 2019, 10: 1422. doi: 10.3389/fpls.2019.01422
|
[27] |
金小俊, 孙艳霞, 于佳琳, 等. 基于深度学习与图像处理的蔬菜苗期杂草识别方法 [J]. 吉林大学学报(工学版), 2023, 53(8):2421−2429.
JIN X J, SUN Y X, YU J L, et al. Weed recognition in vegetable at seedling stage based on deep learning and image processing [J]. Journal of Jilin University:Engineering and Technology Edition, 2023, 53(8): 2421−2429.
|
[28] |
JIN X J, SUN Y X, CHE J, et al. A novel deep learning-based method for detection of weeds in vegetables [J]. Pest Management Science, 2022, 78(5): 1861−1869. doi: 10.1002/ps.6804
|
[29] |
JIN X J, CHE J, CHEN Y. Weed identification using deep learning and image processing in vegetable plantation [J]. IEEE Access, 2021, 9: 10940−10950. doi: 10.1109/ACCESS.2021.3050296
|
[30] |
毛文华, 姜红花, 胡小安, 等. 基于位置特征的行间杂草识别方法 [J]. 农业机械学报, 2007, 38(11):74−76,83. doi: 10.3969/j.issn.1000-1298.2007.11.018
MAO W H, JIANG H H, HU X A, et al. Between-row weed detection method based on position feature [J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(11): 74−76,83. (in Chinese) doi: 10.3969/j.issn.1000-1298.2007.11.018
|
[31] |
PYTORCH. Tensors and dynamic neural networks in python with strong GPU acceleration. [DB/OL]. (2020-01-18)[2020-03-05]. https://github.com/pytorch/pytorch.
|
[32] |
舒娜, 刘波, 林伟伟, 等. 分布式机器学习平台与算法综述 [J]. 计算机科学, 2019, 46(3):9−18. doi: 10.11896/j.issn.1002-137X.2019.03.002
SHU N, LIU B, LIN W W, et al. Survey of distributed machine learning platforms and algorithms [J]. Computer Science, 2019, 46(3): 9−18. (in Chinese) doi: 10.11896/j.issn.1002-137X.2019.03.002
|
[33] |
黄海松, 陈星燃, 韩正功, 等. 基于多尺度注意力机制和知识蒸馏的茶叶嫩芽分级方法 [J]. 农业机械学报, 2022, 53(9):399−407,458.
HUANG H S, CHEN X R, HAN Z G, et al. Tea buds grading method based on multiscale attention mechanism and knowledge distillation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(9): 399−407,458. (in Chinese)
|
[34] |
李子茂, 徐杰, 郑禄, 等. 基于改进DenseNet的茶叶病害小样本识别方法 [J]. 农业工程学报, 2022, 38(10):182−190.
LI Z M, XU J, ZHENG L, et al. Small sample recognition method of tea disease based on improved DenseNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(10): 182−190. (in Chinese)
|
[35] |
GAO S H, CHENG M M, ZHAO K, et al. Res2Net: A new multi-scale backbone architecture [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652−662. doi: 10.1109/TPAMI.2019.2938758
|
[36] |
吕梦棋, 张芮祥, 贾浩, 等. 基于改进ResNet玉米种子分类方法研究 [J]. 中国农机化学报, 2021, 42(4):92−98.
LÜ M Q, ZHANG R X, JIA H, et al. Research on seed classification based on improved ResNet [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(4): 92−98. (in Chinese)
|
[37] |
HANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT. IEEE, 2018: 6848-6856.
|