Citation: | CHEN G L, YAN Y, MENG X W, et al. Gene Cloning and Functional Analysis of MebZIP2 in Cassava [J]. Fujian Journal of Agricultural Sciences,2024,39(2):137−146 doi: 10.19303/j.issn.1008-0384.2024.02.003 |
[1] |
唐杰, 李明娟, 张雅媛, 等. 食用木薯的加工现状及发展前景 [J]. 食品工业科技, 2023, 44(2):469−476.
TANG J, LI M J, ZHANG Y Y, et al. Processing utilization and development prospect of edible cassava [J]. Science and Technology of Food Industry, 2023, 44(2): 469−476. (in Chinese)
|
[2] |
付海天, 郑华, 文峰, 等. 中国木薯研究及产业发展趋势 [J]. 农业研究与应用, 2022, 35(4):9−22. doi: 10.3969/j.issn.2095-0764.2022.04.003
FU H T, ZHENG H, WEN F, et al. Research and industrial development of cassava in China [J]. Agricultural Research and Application, 2022, 35(4): 9−22. (in Chinese) doi: 10.3969/j.issn.2095-0764.2022.04.003
|
[3] |
曹升, 尚小红, 陈会鲜, 等. 广西地方面包木薯种质资源调查及表型性状分析和品质评价 [J]. 西南农业学报, 2021, 34(11):2318−2325.
CAO S, SHANG X H, CHEN H X, et al. Investigation and collection of local bread-cassava germplasm resources in Guangxi and their phenotypic trait analysis and quality evaluation [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(11): 2318−2325. (in Chinese)
|
[4] |
蒋瑶, 胡尚连, 孙霞, 等. 拟南芥bZIP基因家族系统发育树比较分析 [J]. 华北农学报, 2008, 23(1):22−27. doi: 10.7668/hbnxb.2008.01.005
JIANG Y, HU S L, SUN X, et al. Comparative phylogenetic analysis of the bZIP gene family in Arabidopsis thaliana [J]. Acta Agriculturae Boreali-Sinica, 2008, 23(1): 22−27. (in Chinese) doi: 10.7668/hbnxb.2008.01.005
|
[5] |
韩聪, 何禹畅, 吴丽娟, 等. 水稻碱性亮氨酸拉链(bZIP)蛋白家族功能研究进展 [J]. 中国水稻科学, 2023, 37(4):436−448.
HAN C, HE Y C, WU L J, et al. Research progress in the function of basic leucine zipper(bZIP)protein family in rice [J]. Chinese Journal of Rice Science, 2023, 37(4): 436−448. (in Chinese)
|
[6] |
董庆. 玉米淀粉合成调控基因的挖掘及功能分析[D]. 合肥: 安徽农业大学, 2015.
DONG Q. Identification and characterization of regulatory genes related to starch synthesis in maize(Zea may L. )[D]. Hefei: Anhui Agricultural University, 2015. (in Chinese)
|
[7] |
E Z G, ZHANG Y P, ZHOU J H, et al. Mini review roles of the bZIP gene family in rice [J]. Genetics and Molecular Research, 2014, 13(2): 3025−3036. doi: 10.4238/2014.April.16.11
|
[8] |
DRÖGE-LASER W, SNOEK B L, SNEL B, et al. The Arabidopsis bZIP transcription factor family—An update [J]. Current Opinion in Plant Biology, 2018, 45: 36−49. doi: 10.1016/j.pbi.2018.05.001
|
[9] |
ZHANG B Y, FENG C, CHEN L, et al. Identification and functional analysis of bZIP genes in cotton response to drought stress [J]. International Journal of Molecular Sciences, 2022, 23(23): 14894. doi: 10.3390/ijms232314894
|
[10] |
WEI K F, CHEN J, WANG Y M, et al. Genome-wide analysis of bZIP-encoding genes in maize [J]. DNA Research, 2012, 19(6): 463−476. doi: 10.1093/dnares/dss026
|
[11] |
BI C X, YU Y H, DONG C H, et al. The bZIP transcription factor TabZIP15 improves salt stress tolerance in wheat [J]. Plant Biotechnology Journal, 2021, 19(2): 209−211. doi: 10.1111/pbi.13453
|
[12] |
YUE L, PEI X X, KONG F J, et al. Divergence of functions and expression patterns of soybean bZIP transcription factors [J]. Frontiers in Plant Science, 2023, 14: 1150363. doi: 10.3389/fpls.2023.1150363
|
[13] |
WANG Q, GUO C, LI Z Y, et al. Identification and analysis of bZIP family genes in potato and their potential roles in stress responses [J]. Frontiers in Plant Science, 2021, 12: 637343. doi: 10.3389/fpls.2021.637343
|
[14] |
刘西西. SAPK蛋白与bZIP蛋白互作组分析及SAPK10基因调控水稻抽穗期的功能研究[D]. 北京: 中国农业科学院, 2019
LIU X X. Analysis of interactions between SAPKs and bZIPs and functional characterization of SAPK10 gene in rice flowering[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
|
[15] |
NORÉN LINDBÄCK L, JI Y, CERVELA-CARDONA L, et al. An interplay between bZIP16, bZIP68, and GBF1 regulates nuclear photosynthetic genes during photomorphogenesis in Arabidopsis [J]. The New Phytologist, 2023, 240(3): 1082−1096. doi: 10.1111/nph.19219
|
[16] |
KUMAR P, KUMAR P, SHARMA D, et al. Genome-wide identification and expression profiling of basic leucine zipper transcription factors following abiotic stresses in potato (Solanum tuberosum L. ) [J]. PLoS One, 2021, 16(3): e0247864. doi: 10.1371/journal.pone.0247864
|
[17] |
黄星群. 油菜种子贮藏物质合成及外源激素调控的生化分析[D]. 长沙: 湖南大学, 2015.
HUANG X Q. Biochemical analysis of storage substances biosynthesis and the regulation of exogenous hormones in Brassica napus L[D]. Changsha: Hunan University, 2015. (in Chinese)
|
[18] |
DASH M, YORDANOV Y S, GEORGIEVA T, et al. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress [J]. The Plant Journal, 2017, 89(4): 692−705. doi: 10.1111/tpj.13413
|
[19] |
MA H Z, LIU C, LI Z X, et al. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development [J]. Plant Physiology, 2018, 178(2): 753−770. doi: 10.1104/pp.18.00436
|
[20] |
DONG Q, XU Q Q, KONG J J, et al. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice [J]. Plant Science, 2019, 283: 407−415. doi: 10.1016/j.plantsci.2019.03.001
|
[21] |
KUMAR P, PARVEEN A, SHARMA H, et al. Understanding the regulatory relationship of abscisic acid and bZIP transcription factors towards amylose biosynthesis in wheat [J]. Molecular Biology Reports, 2021, 48(3): 2473−2483. doi: 10.1007/s11033-021-06282-4
|
[22] |
WANG L, CAO H L, QIAN W J, et al. Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic Arabidopsis [J]. Annals of Botany, 2017, 119(7): 1195−1209. doi: 10.1093/aob/mcx011
|
[23] |
WILSON M C, MUTKA A M, HUMMEL A W, et al. Gene expression atlas for the food security crop cassava [J]. The New Phytologist, 2017, 213(4): 1632−1641. doi: 10.1111/nph.14443
|
[24] |
FU L L, DING Z H, TIE W W, et al. Integrated metabolomic and transcriptomic analyses reveal novel insights of anthocyanin biosynthesis on color formation in cassava tuberous roots [J]. Frontiers in Nutrition, 2022, 9: 842693. doi: 10.3389/fnut.2022.842693
|
[25] |
颜彦, 铁韦韦, 丁泽红, 等. 木薯MePYL8基因克隆及表达分析 [J]. 分子植物育种, 2018, 16(14):4498−4504.
YAN Y, TIE W W, DING Z H, et al. Cloning and expression analysis of MePYL8 gene in cassava [J]. Molecular Plant Breeding, 2018, 16(14): 4498−4504. (in Chinese)
|
[26] |
DING Z H, FU L L, TIE W W, et al. Highly dynamic, coordinated, and stage-specific profiles are revealed by a multi-omics integrative analysis during tuberous root development in cassava [J]. Journal of Experimental Botany, 2020, 71(22): 7003−7017. doi: 10.1093/jxb/eraa369
|
[27] |
张开慧. 酵母单杂交技术的原理及应用 [J]. 宁夏农林科技, 2012, 53(2):31−32. doi: 10.3969/j.issn.1002-204X.2012.02.016
ZHANG K H. Principle and application of yeast one-hybrid method [J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2012, 53(2): 31−32. (in Chinese) doi: 10.3969/j.issn.1002-204X.2012.02.016
|
[28] |
EDRISI MARYAN K, FARROKHI N, SAMIZADEH LAHIJI H. Cold-responsive transcription factors in Arabidopsis and rice: A regulatory network analysis using array data and gene co-expression network [J]. PLoS One, 2023, 18(6): e0286324. doi: 10.1371/journal.pone.0286324
|
[29] |
WANG J C, XU H, ZHU Y, et al. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm [J]. Journal of Experimental Botany, 2013, 64(11): 3453−3466. doi: 10.1093/jxb/ert187
|
[30] |
SONG Y H, LUO G B, SHEN L S, et al. TubZIP28, a novel bZIP family transcription factor from Triticum urartu, and TabZIP28, its homologue from Triticum aestivum, enhance starch synthesis in wheat [J]. The New Phytologist, 2020, 226(5): 1384−1398. doi: 10.1111/nph.16435
|
[31] |
PONTES L C G, CARDOSO C M Y, CALLEGARI D M, et al. A cassava CPRF-2-like bZIP transcription factor showed increased transcript levels during light treatment [J]. Protein and Peptide Letters, 2020, 27(9): 904−914. doi: 10.2174/0929866527666200420110338
|
[32] |
ZHANG Z R, QUAN S W, NIU J X, et al. Genome-wide identification, classification, expression and duplication analysis of bZIP family genes in Juglans regia L [J]. International Journal of Molecular Sciences, 2022, 23(11): 5961. doi: 10.3390/ijms23115961
|
[33] |
LIU H T, TANG X, ZHANG N, et al. Role of bZIP transcription factors in plant salt stress [J]. International Journal of Molecular Sciences, 2023, 24(9): 7893. doi: 10.3390/ijms24097893
|
[34] |
ZHU Q Y, LV J H, WU Y, et al. MdbZIP74 negatively regulates osmotic tolerance and adaptability to moderate drought conditions of apple plants [J]. Journal of Plant Physiology, 2023, 283: 153965. doi: 10.1016/j.jplph.2023.153965
|
[35] |
CAI J, XUE J J, ZHU W L, et al. Integrated metabolomic and transcriptomic analyses reveals sugar transport and starch accumulation in two specific germplasms of Manihot esculenta crantz [J]. International Journal of Molecular Sciences, 2023, 24(8): 7236. doi: 10.3390/ijms24087236
|
[36] |
未丽, 刘建利. 植物蛋白质亚细胞定位相关研究概述 [J]. 植物科学学报, 2021, 39(1):93−101. doi: 10.11913/PSJ.2095-0837.2021.10093
WEI L, LIU J L. Overview of research on protein subcellular localization in plants [J]. Plant Science Journal, 2021, 39(1): 93−101. (in Chinese) doi: 10.11913/PSJ.2095-0837.2021.10093
|
[37] |
PAN X J, WANG C L, LIU Z S, et al. Identification of ABF/AREB gene family in tomato (Solanum lycopersicum L. ) and functional analysis of ABF/AREB in response to ABA and abiotic stresses [J]. PeerJ, 2023, 11: e15310. doi: 10.7717/peerj.15310
|
[38] |
SONG M, FANG S Q, LI Z G, et al. CsAtf1, a bZIP transcription factor, is involved in fludioxonil sensitivity and virulence in the rubber tree anthracnose fungus Colletotrichum siamense [J]. Fungal Genetics and Biology, 2022, 158: 103649. doi: 10.1016/j.fgb.2021.103649
|
[39] |
WANG B X, XU B, LIU Y, et al. A Novel mechanisms of the signaling cascade associated with the SAPK10-bZIP20-NHX1 synergistic interaction to enhance tolerance of plant to abiotic stress in rice (Oryza sativa L. ) [J]. Plant Science, 2022, 323: 111393. doi: 10.1016/j.plantsci.2022.111393
|
[40] |
FU L L, DING Z H, TIE W W, et al. Large-scale RNAseq analysis reveals new insights into the key genes and regulatory networks of anthocyanin biosynthesis during development and stress in cassava [J]. Industrial Crops and Products, 2021, 169: 113627. doi: 10.1016/j.indcrop.2021.113627
|