• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 39 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
ZHOU H M, CHEN J G, DAI Z G, et al. Lightweight Residual Networks for Diagnosis of Apple Leaf Diseases [J]. Fujian Journal of Agricultural Sciences,2024,39(1):83−92 doi: 10.19303/j.issn.1008-0384.2024.01.011
Citation: ZHOU H M, CHEN J G, DAI Z G, et al. Lightweight Residual Networks for Diagnosis of Apple Leaf Diseases [J]. Fujian Journal of Agricultural Sciences,2024,39(1):83−92 doi: 10.19303/j.issn.1008-0384.2024.01.011

Lightweight Residual Networks for Diagnosis of Apple Leaf Diseases

doi: 10.19303/j.issn.1008-0384.2024.01.011
  • Received Date: 2023-07-03
  • Rev Recd Date: 2023-10-13
  • Publish Date: 2024-01-28
  •   Objective  An improved diagnostic model on apple leaf diseases was developed applying the lightweight residual networks.  Method  Data imbalance and overfitting of the original ResNet18 model was reduced by offline and online enhancements on its generalization ability. A scaling factor was introduced to minimize the number of network parameters and maximize the pooling layer in the constant mapping of down-sampled residual structure instead of 1×1 convolution. Redundant features in pictures were eliminated, and sensory field of the model increased. The first 7×7 convolutional layer of ResNet18 was replaced with a multi-scale feature extraction module to enrich fine lesions extraction. Finally, the DenseBlock module was inserted in the network to fully utilize valid shallow features.   Results  The improved ResNet18 model achieved an accuracy of 97.94%, which was a 0.88 percentage increase, with a significant 90.77% reduction on the program size of 3.97 MB. It performed superbly in comparison to other light-weight models, such as ShuffleNetv2, MobileNetv3, and EfficientNet, or the classical models, such as Inceptionv2, DenseNet, and ResNet.   Conclusion   The improved ResNet18 model could accurately identify the apple leaf diseases under complex circumstances. With fewer parameters than the original program, it could be more easily installed in a variety of devices for the diagnosis.
  • loading
  • [1]
    张秋菊. 苹果树病虫害智能识别系统设计与实现 [J]. 农业工程技术, 2022, 42(30):23−24.

    ZHANG Q J. Design and implementation of intelligent identification system for apple tree pests and diseases [J]. Agricultural Engineering Technology, 2022, 42(30): 23−24. (in Chinese)
    [2]
    KUMAR S, KUMAR R, GUPTA M. Analysis of apple plant leaf diseases detection and classification: A review[C]//2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC). November 25-27, 2022. Solan, Himachal Pradesh, India. IEEE, 2022: 361-365.
    [3]
    王树桐, 王亚南, 曹克强. 近年我国重要苹果病害发生概况及研究进展 [J]. 植物保护, 2018, 44(5):13−25,50.

    WANG S T, WANG Y N, CAO K Q. Occurrence of and research progress in important apple diseases in China in recent years [J]. Plant Protection, 2018, 44(5): 13−25,50. (in Chinese)
    [4]
    钟昌源, 胡泽林, 李淼, 等. 基于分组注意力模块的实时农作物病害叶片语义分割模型 [J]. 农业工程学报, 2021, 37(4):208−215.

    ZHONG C Y, HU Z L, LI M, et al. Real-time semantic segmentation model for crop disease leaves using group attention module [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(4): 208−215. (in Chinese)
    [5]
    翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述 [J]. 农业机械学报, 2021, 52(7):1−18.

    ZHAI Z Y, CAO Y F, XU H L, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1−18. (in Chinese)
    [6]
    CHENG H H, DAI Y L, LIN Y, et al. Identifying tomato leaf diseases under real field conditions using convolutional neural networks and a chatbot [J]. Computers and Electronics in Agriculture, 2022, 202: 107365. doi: 10.1016/j.compag.2022.107365
    [7]
    AI Y, SUN C, TIE J, et al. Research on recognition model of crop diseases and insect pests based on deep learning in harsh environments [J]. IEEE Access, 2020, 8: 171686−171693. doi: 10.1109/ACCESS.2020.3025325
    [8]
    谢圣桥, 宋健, 汤修映, 等. 基于迁移学习和残差网络的葡萄叶部病害识别 [J]. 农机化研究, 2023, 45(8):18−23,28.

    XIE S Q, SONG J, TANG X Y, et al. Identification of grape leaf diseases based on transfer learning and residual networks [J]. Journal of Agricultural Mechanization Research, 2023, 45(8): 18−23,28. (in Chinese)
    [9]
    王彦翔, 张艳, 杨成娅, 等. 基于深度学习的农作物病害图像识别技术进展 [J]. 浙江农业学报, 2019, 31(4):669−676.

    WANG Y X, ZHANG Y, YANG C Y, et al. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning [J]. Acta Agriculturae Zhejiangensis, 2019, 31(4): 669−676. (in Chinese)
    [10]
    鲍文霞, 吴刚, 胡根生, 等. 基于改进卷积神经网络的苹果叶部病害识别 [J]. 安徽大学学报(自然科学版), 2021, 45(1):53−59.

    BAO W X, WU G, HU G S, et al. Apple leaf disease recognition based on improved convolutional neural network [J]. Journal of Anhui University (Natural Science Edition), 2021, 45(1): 53−59. (in Chinese)
    [11]
    NADER A, KHAFAGY M H, HUSSIEN S A. Grape Leaves Diseases Classification using Ensemble Learning and Transfer Learning [J]. International Journal of Advanced Computer Science and Applications, 2022, 13(7): 563−571.
    [12]
    宋晨勇, 白皓然, 孙伟浩, 等. 基于GoogLeNet改进模型的苹果叶病诊断系统设计 [J]. 中国农机化学报, 2021, 42(7):148−155.

    SONG C Y, BAI H R, SUN W H, et al. Design of apple leaf disease diagnosis system based on GoogLeNet improved model [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7): 148−155. (in Chinese)
    [13]
    GAO Y X, CAO Z Z, CAI W W, et al. Apple leaf disease identification in complex background based on BAM-net [J]. Agronomy, 2023, 13(5): 1240. doi: 10.3390/agronomy13051240
    [14]
    周宏威, 沈恒宇, 袁新佩, 等. 基于迁移学习的苹果树叶片病虫害识别方法研究 [J]. 中国农机化学报, 2021, 42(11):151−158.

    ZHOU H W, SHEN H Y, YUAN X P, et al. Research on identification method of apple leaf diseases based on transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 151−158. (in Chinese)
    [15]
    孙文杰, 牟少敏, 董萌萍, 等. 基于卷积循环神经网络的桃树叶部病害图像识别 [J]. 山东农业大学学报(自然科学版), 2020, 51(6):998−1003.

    SUN W J, MU S M, DONG M P, et al. Image recognition of peach leaf diseases based on convolutional recurrent neural network [J]. Journal of Shandong Agricultural University (Natural Science Edition), 2020, 51(6): 998−1003. (in Chinese)
    [16]
    孙俊, 朱伟栋, 罗元秋, 等. 基于改进MobileNet-V2的田间农作物叶片病害识别 [J]. 农业工程学报, 2021, 37(22):161−169.

    SUN J, ZHU W D, LUO Y Q, et al. Recognizing the diseases of crop leaves in fields using improved Mobilenet-V2 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 161−169. (in Chinese)
    [17]
    彭红星, 何慧君, 高宗梅, 等. 基于改进ShuffleNetV2模型的荔枝病虫害识别方法 [J]. 农业机械学报, 2022, 53(12):290−300.

    PENG H X, HE H J, GAO Z M, et al. Litchi diseases and insect pests identification method based on improved ShuffleNetV2 [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(12): 290−300. (in Chinese)
    [18]
    杨祥, 段军明, 董明刚. 面向移动端的植物病害图像识别方法及其应用 [J]. 江苏农业科学, 2023, 51(4):191−197.

    YANG X, DUAN J M, DONG M G. Mobile-oriented plant disease image recognition method and its application [J]. Jiangsu Agricultural Sciences, 2023, 51(4): 191−197. (in Chinese)
    [19]
    LI Z B, YANG Y B, LI Y, et al. A Solanaceae disease recognition model based on SE-Inception [J]. Computers and Electronics in Agriculture, 2020, 178: 105792. doi: 10.1016/j.compag.2020.105792
    [20]
    周敏敏. 基于迁移学习的苹果叶面病害Android检测系统研究[D]. 杨凌: 西北农林科技大学, 2019.

    ZHOU M M. Apple foliage diseases recognition in android system with transfer learning-based[D]. Yangling: Northwest A & F University, 2019. (in Chinese)
    [21]
    李大湘, 曾小通, 刘颖. 耦合全局与局部特征的苹果叶部病害识别模型 [J]. 农业工程学报, 2022, 38(16):207−214.

    LI D X, ZENG X T, LIU Y. Apple leaf disease identification model by coupling global and patch features [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 207−214. (in Chinese)
    [22]
    张宁, 吴华瑞, 韩笑, 等. 基于多尺度和注意力机制的番茄病害识别方法 [J]. 浙江农业学报, 2021, 33(7):1329−1338.

    ZHANG N, WU H R, HAN X, et al. Tomato disease recognition scheme based on multi-scale and attention mechanism [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1329−1338. (in Chinese)
    [23]
    王等准, 李飞, 严春雨, 等. 基于多尺度特征融合的轻量化苹果叶部病理识别 [J]. 激光与光电子学进展, 2023, 60(2):99−107.

    WANG D Z, LI F, YAN C Y, et al. Lightweight apple-leaf pathological recognition based on multiscale fusion [J]. Laser & Optoelectronics Progress, 2023, 60(2): 99−107. (in Chinese)
    [24]
    HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017. Honolulu, HI. IEEE, 2017: 4700-4708.
    [25]
    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016. Las Vegas, NV, USA. IEEE, 2016: 770-778.
    [26]
    HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. 2017: arXiv: 1704.04861.https://arxiv.org/abs/1704.04861.
    [27]
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016. Las Vegas, NV, USA. IEEE, 2016: 2818-2826.
    [28]
    韩旭, 赵春江, 吴华瑞, 等. 基于注意力机制及多尺度特征融合的番茄叶片缺素图像分类方法 [J]. 农业工程学报, 2021, 37(17):177−188.

    HAN X, ZHAO C J, WU H R, et al. Image classification method for tomato leaf deficient nutrient elements based on attention mechanism and multi-scale feature fusion [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(17): 177−188. (in Chinese)
    [29]
    JIANG M L, FENG C G, FANG X S, et al. Rice disease identification method based on attention mechanism and deep dense network [J]. Electronics, 2023, 12(3): 508. doi: 10.3390/electronics12030508
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (164) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return