Citation: | WU M, HUANG J, SHI T X, et al. CRISPR/Cas9 Technology-generated High-amylose Rice Varieties [J]. Fujian Journal of Agricultural Sciences,2024,39(1):17−24 doi: 10.19303/j.issn.1008-0384.2024.01.003 |
[1] |
SUN Y W, JIAO G A, LIU Z P, et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes [J]. Frontiers in Plant Science, 2017, 8: 298.
|
[2] |
PROSEKOV A Y, IVANOVA S A. Food security: The challenge of the present [J]. Geoforum, 2018, 91: 73−77. doi: 10.1016/j.geoforum.2018.02.030
|
[3] |
CHEN L, MAGLIANO D J, ZIMMET P Z. The worldwide epidemiology of type 2 diabetes mellitus—Present and future perspectives [J]. Nature Reviews Endocrinology, 2012, 8: 228−236. doi: 10.1038/nrendo.2011.183
|
[4] |
BHAVADHARINI B, MOHAN V, DEHGHAN M, et al. White rice intake and incident diabetes: A study of 132, 373 participants in 21 countries [J]. Diabetes Care, 2020, 43(11): 2643−2650. doi: 10.2337/dc19-2335
|
[5] |
JIANG H X, LIO J, BLANCO M, et al. Resistant-starch formation in high-amylose maize starch during Kernel development [J]. Journal of Agricultural and Food Chemistry, 2010, 58(13): 8043−8047. doi: 10.1021/jf101056y
|
[6] |
REGINA A, BERBEZY P, KOSAR-HASHEMI B, et al. A genetic strategy generating wheat with very high amylose content [J]. Plant Biotechnology Journal, 2015, 13(9): 1276−1286. doi: 10.1111/pbi.12345
|
[7] |
VONK R J, HAGEDOORN R E, DE GRAAFF R, et al. Digestion of so-called resistant starch sources in the human small intestine [J]. The American Journal of Clinical Nutrition, 2000, 72(2): 432−438. doi: 10.1093/ajcn/72.2.432
|
[8] |
马先红, 张文露, 张铭鉴. 玉米淀粉的研究现状 [J]. 粮食与油脂, 2019, 32(2):4−6. doi: 10.3969/j.issn.1008-9578.2019.02.002
MA X H, ZHANG W L, ZHANG M J. Research status of corn starch [J]. Cereals & Oils, 2019, 32(2): 4−6.(in Chinese) doi: 10.3969/j.issn.1008-9578.2019.02.002
|
[9] |
BISELLI C, CAVALLUZZO D, PERRINI R, et al. Improvement of marker-based predictability of Apparent Amylose Content in japonica rice through GBSSI allele mining [J]. Rice, 2014, 7(1): 1. doi: 10.1186/1939-8433-7-1
|
[10] |
RAHMAN S, BIRD A, REGINA A, et al. Resistant starch in cereals: Exploiting genetic engineering and genetic variation [J]. Journal of Cereal Science, 2007, 46(3): 251−260. doi: 10.1016/j.jcs.2007.05.001
|
[11] |
DAINTY S A, KLINGEL S L, PILKEY S E, et al. Resistant starch bagels reduce fasting and postprandial insulin in adults at risk of type 2 Diabetes1 [J]. The Journal of Nutrition, 2016, 146(11): 2252−2259. doi: 10.3945/jn.116.239418
|
[12] |
QU J Z, XU S T, ZHANG Z Q, et al. Evolutionary, structural and expression analysis of core genes involved in starch synthesis [J]. Scientific Reports, 2018, 8: 12736. doi: 10.1038/s41598-018-30411-y
|
[13] |
WANG Z B, LI W H, QI J C, et al. Starch accumulation, activities of key enzyme and gene expression in starch synthesis of wheat endosperm with different starch contents [J]. Journal of Food Science and Technology, 2014, 51(3): 419−429. doi: 10.1007/s13197-011-0520-z
|
[14] |
NAKAMURA Y, UTSUMI Y, SAWADA T, et al. Characterization of the reactions of starch branching enzymes from rice endosperm [J]. Plant and Cell Physiology, 2010, 51(5): 776−794. doi: 10.1093/pcp/pcq035
|
[15] |
BIRT D F, BOYLSTON T, HENDRICH S, et al. Resistant starch: Promise for improving human health [J]. Advances in Nutrition, 2013, 4(6): 587−601. doi: 10.3945/an.113.004325
|
[16] |
CHEN M H, HUANG L F, LI H M, et al. Signal peptide-dependent targeting of a rice α-amylase and cargo proteins to plastids and extracellular compartments of plant cells [J]. Plant Physiology, 2004, 135(3): 1367−1377. doi: 10.1104/pp.104.042184
|
[17] |
WANG J, HU P, CHEN Z C, et al. Progress in high-amylose cereal crops through inactivation of starch branching enzymes [J]. Frontiers in Plant Science, 2017, 8: 469.
|
[18] |
CARCIOFI M, BLENNOW A, JENSEN S L, et al. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules [J]. BMC Plant Biology, 2012, 12: 223. doi: 10.1186/1471-2229-12-223
|
[19] |
SCHÖNHOFEN A, ZHANG X Q, DUBCOVSKY J. Combined mutations in five wheat STARCH BRANCHING ENZYME II genes improve resistant starch but affect grain yield and bread-making quality [J]. Journal of Cereal Science, 2017, 75: 165−174. doi: 10.1016/j.jcs.2017.03.028
|
[20] |
SHU X L, JIAO G A, FITZGERALD M A, et al. Starch structure and digestibility of rice high in resistant starch [J]. Starch - Stä rke, 2006, 58(8): 411−417.
|
[21] |
BUTARDO V M, FITZGERALD M A, BIRD A R, et al. Impact of down-regulation of starch branching enzyme IIb in rice by artificial microRNA- and hairpin RNA-mediated RNA silencing [J]. Journal of Experimental Botany, 2011, 62(14): 4927−4941. doi: 10.1093/jxb/err188
|
[22] |
ENDO M, MIKAMI M, TOKI S. Biallelic gene targeting in rice [J]. Plant Physiology, 2016, 170(2): 667−677. doi: 10.1104/pp.15.01663
|
[23] |
SATOH H, NISHI A, YAMASHITA K, et al. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm [J]. Plant Physiology, 2003, 133(3): 1111−1121. doi: 10.1104/pp.103.021527
|
[24] |
刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展 [J]. 华南农业大学学报, 2019, 40(5):38−49. doi: 10.7671/j.issn.1001-411X.201905058
LIU Y G, LI G S, ZHANG Y L, et al. Current advances on CRISPR/Cas genome editing technologies in plants [J]. Journal of South China Agricultural University, 2019, 40(5): 38−49.(in Chinese) doi: 10.7671/j.issn.1001-411X.201905058
|
[25] |
NISHIMURA A, AICHI I, MATSUOKA M. A protocol for Agrobacterium-mediated transformation in rice [J]. Nature Protocols, 2006, 1: 2796−2802. doi: 10.1038/nprot.2006.469
|
[26] |
POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components [J]. Plant Molecular Biology Reporter, 1997, 15(1): 8−15. doi: 10.1007/BF02772108
|
[27] |
郭新颖. 利用CRISPR/Cas9技术编辑Wx基因5’UTR区降低水稻直链淀粉含量[D]. 南宁: 广西大学, 2022.
GUO X Y. Reduction of rice amylose content by editing the 5’UTR of the wx gene via CRISPR/Cas9 technology[D]. Nanning: Guangxi University, 2022. (in Chinese)
|
[28] |
牛淑琳, 鞠培娜, 周冠华, 等. 利用CRISPR/Cas9技术编辑OsRR22基因创制耐盐水稻种质资源 [J]. 山东农业科学, 2023, 55(2):30−35.
NIU S L, JU P N, ZHOU G H, et al. Creation of salt-tolerant rice germplasm by editing OsRR22 gene via CRISPR/Cas9 technique [J]. Shandong Agricultural Sciences, 2023, 55(2): 30−35.(in Chinese)
|
[29] |
潘雯丽, 梁倩, 高群玉. 高直链玉米淀粉在食品、食品材料及保健食品中的应用进展 [J]. 食品工业科技, 2022, 43(21):396−404.
PAN W L, LIANG Q, GAO Q Y. Application of high amylose maize starch in food, food material and health product [J]. Science and Technology of Food Industry, 2022, 43(21): 396−404.(in Chinese)
|
[30] |
周小耕. 以CRISPR/CaS9突变淀粉分支酶SBE3和SSⅢ基因创制稻米高抗性淀粉新种质[D]. 南京: 南京农业大学, 2019.
ZHOU X G. Construction of novel rice germplasm with high level of resistant starch by mutating SBE3 and SSⅢ through CRISPR/Cas9 system[D]. Nanjing: Nanjing Agricultural University, 2019. (in Chinese)
|
[31] |
BISWAS S, IBARRA O, SHAPHEK M, et al. Increasing the level of resistant starch in ‘Presidio’ rice through multiplex CRISPR–Cas9 gene editing of starch branching enzyme genes [J]. The Plant Genome, 2023, 16(2): e20225. doi: 10.1002/tpg2.20225
|