Citation: | GUO L N, SHEN H Y, WANG J, et al. Interacting Proteins of Olfactroy Receptor OR1and OR2 with Co-IP Approach Followed by Mass Spectrometry Analysis in Apis cerana cerana [J]. Fujian Journal of Agricultural Sciences,2024,39(1):7−16 doi: 10.19303/j.issn.1008-0384.2024.01.002 |
[1] |
GADENNE C, BARROZO R B, ANTON S. Plasticity in insect olfaction: To smell or not to smell? [J]. Annual Review of Entomology, 2016, 61: 317−333. doi: 10.1146/annurev-ento-010715-023523
|
[2] |
CAREY A F, WANG G R, SU C Y, et al. Odorant reception in the malaria mosquito Anopheles gambiae [J]. Nature, 2010, 464(7285): 66−71. doi: 10.1038/nature08834
|
[3] |
MCINTYRE J C, HEGE M M, BERBARI N F. Trafficking of ciliary G protein-coupled receptors [J]. Methods in Cell Biology, 2016, 132: 35−54.
|
[4] |
SATO K, PELLEGRINO M, NAKAGAWA T, et al. Insect olfactory receptors are heteromeric ligand-gated ion channels [J]. Nature, 2008, 452(7190): 1002−1006. doi: 10.1038/nature06850
|
[5] |
WICHER D, SCHÄFER R, BAUERNFEIND R, et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels [J]. Nature, 2008, 452(7190): 1007−1011. doi: 10.1038/nature06861
|
[6] |
MUKUNDA L, MIAZZI F, SARGSYAN V, et al. Calmodulin affects sensitization of Drosophila melanogaster odorant receptors [J]. Frontiers in Cellular Neuroscience, 2016, 10: 28.
|
[7] |
CASSAU S, KRIEGER J. The role of SNMPs in insect olfaction [J]. Cell and Tissue Research, 2021, 383(1): 21−33. doi: 10.1007/s00441-020-03336-0
|
[8] |
FLEISCHER J, PREGITZER P, BREER H, et al. Access to the odor world: Olfactory receptors and their role for signal transduction in insects [J]. Cellular and Molecular Life Sciences, 2018, 75(3): 485−508. doi: 10.1007/s00018-017-2627-5
|
[9] |
STENGL M, FUNK N W. The role of the coreceptor Orco in insect olfactory transduction [J]. Journal of Comparative Physiology A, 2013, 199(11): 897−909. doi: 10.1007/s00359-013-0837-3
|
[10] |
ZHAO H T, GAO P F, ZHANG C X, et al. Molecular identification and expressive characterization of an olfactory co-receptor gene in the Asian honeybee, Apis cerana cerana [J]. Journal of Insect Science (Online), 2013, 13: 80.
|
[11] |
GUO L N, ZHAO H T, JIANG Y S. Expressional and functional interactions of two Apis cerana cerana olfactory receptors [J]. PeerJ, 2018, 6: e5005. doi: 10.7717/peerj.5005
|
[12] |
GUO L N, ZHAO H T, XU B, et al. Odorant receptor might be related to sperm DNA integrity in Apis cerana cerana [J]. Animal Reproduction Science, 2018, 193: 33−39. doi: 10.1016/j.anireprosci.2018.03.029
|
[13] |
JIA J L, JIN J P, CHEN Q, et al. Eukaryotic expression, Co-IP and MS identify BMPR-1B protein-protein interaction network [J]. Biological Research, 2020, 53(1): 24. doi: 10.1186/s40659-020-00290-7
|
[14] |
王焌翔, 杨小祯, 何欢, 等. GST-pull Down和免疫共沉淀联合质谱鉴定埃及伊蚊中肠的Cry4Ba和Cry11Aa互作蛋白 [J]. 农业生物技术学报, 2022, 30(9):1797−1809.
WANG J X, YANG X Z, HE H, et al. Identification of Cry4Ba and Cry11Aa interacting proteins in Aedes aegypti midgut by GST-pull down and co-immunoprecipitation combined with mass spectrometry [J]. Journal of Agricultural Biotechnology, 2022, 30(9): 1797−1809.(in Chinese)
|
[15] |
王燕碧, 赵采芹, 唐宏, 等. 与鸡斑点型锌指结构蛋白互作的细胞蛋白筛选及其功能分析 [J]. 农业生物技术学报, 2022, 30(5):944−956.
WANG Y B, ZHAO C Q, TANG H, et al. Screening and functional analysis of cellular proteins interacting with chicken(Gallus gallus) speckle-type POZ protein [J]. Journal of Agricultural Biotechnology, 2022, 30(5): 944−956.(in Chinese)
|
[16] |
MURRAY B, PENG H, BARBIER-TORRES L, et al. Methionine adenosyltransferase α1 is targeted to the mitochondrial matrix and interacts with cytochrome P450 2E1 to lower its expression [J]. Hepatology, 2019, 70(6): 2018−2034. doi: 10.1002/hep.30762
|
[17] |
赵焕之, 赵其平, 朱顺海, 等. 免疫共沉淀联合质谱技术筛选柔嫩艾美耳球虫钙依赖蛋白激酶3互作蛋白 [J]. 中国动物传染病学报, 2020, 28(5):1−7.
ZHAO H Z, ZHAO Q P, ZHU S H, et al. Identification of etcdpk 3 interacting proteins by co-immunopre cipitation in combination with mass spectrometry [J]. Chinese Journal of Animal Infectious Diseases, 2020, 28(5): 1−7.(in Chinese)
|
[18] |
WU Q S, MEDINA S G, KUSHAWAH G, et al. Translation affects mRNA stability in a codon-dependent manner in human cells [J]. eLife, 2019, 8: e45396. doi: 10.7554/eLife.45396
|
[19] |
DEFORGES J, LOCKER N, SARGUEIL B. mRNAs that specifically interact with eukaryotic ribosomal subunits [J]. Biochimie, 2015, 114: 48−57. doi: 10.1016/j.biochi.2014.12.008
|
[20] |
ACHENBACH J, NIERHAUS K H. The mechanics of ribosomal translocation [J]. Biochimie, 2015, 114: 80−89. doi: 10.1016/j.biochi.2014.12.003
|
[21] |
PENG J, LI Z, YANG Y, et al. Comparative transcriptome analysis provides novel insight into morphologic and metabolic changes in the fat body during silkworm metamorphosis [J]. International Journal of Molecular Sciences, 2018, 19(11): 3525. doi: 10.3390/ijms19113525
|
[22] |
PUIG O, MATTILA J. Understanding Forkhead box class O function: Lessons from Drosophila melanogaster [J]. Antioxidants & Redox Signaling, 2011, 14(4): 635−647.
|
[23] |
DONG Y, CHEN W W, KANG K, et al. FoxO directly regulates the expression of TOR/S6K and vitellogenin to modulate the fecundity of the brown planthopper [J]. Science China Life Sciences, 2021, 64(1): 133−143. doi: 10.1007/s11427-019-1734-6
|
[24] |
CAI M J, ZHAO W L, JING Y P, et al. 20-Hydroxyecdysone activates Forkhead box O to promote proteolysis during Helicoverpa armigera molting [J]. Development, 2016, 143(6): 1005−1015.
|
[25] |
MOLAEI M, VANDEHOEF C, KARPAC J. NF-κB shapes metabolic adaptation by attenuating foxo-mediated lipolysis in Drosophila [J]. Developmental Cell, 2019, 49(5): 802−810.e6. doi: 10.1016/j.devcel.2019.04.009
|
[26] |
WICHER D, MIAZZI F. Functional properties of insect olfactory receptors: Ionotropic receptors and odorant receptors [J]. Cell and Tissue Research, 2021, 383(1): 7−19. doi: 10.1007/s00441-020-03363-x
|
[27] |
ANVARIAN Z, MYKYTYN K, MUKHOPADHYAY S, et al. Cellular signalling by primary cilia in development, organ function and disease [J]. Nature Reviews Nephrology, 2019, 15(4): 199−219. doi: 10.1038/s41581-019-0116-9
|
[28] |
ZHAO C L, ZHANG Z M, QU X M, et al. Desert hedgehog mediates the proliferation of medaka spermatogonia through Smoothened signaling [J]. Reproduction, 2022, 163(4): 209−218. doi: 10.1530/REP-21-0468
|
[29] |
ZOTTER B, DAGAN O, BRADY J, et al. Gli1 regulates the postnatal acquisition of peripheral nerve architecture [J]. The Journal of Neuroscience, 2022, 42(2): 183−201. doi: 10.1523/JNEUROSCI.3096-20.2021
|
[30] |
SIVAKUMAR S, QI S T, CHENG N Y, et al. TP53 promotes lineage commitment of human embryonic stem cells through ciliogenesis and sonic hedgehog signaling [J]. Cell Reports, 2022, 38(7): 110395. doi: 10.1016/j.celrep.2022.110395
|
[31] |
FINDAKLY S, DAGGUBATI V, GARCIA G, et al. Sterol and oxysterol synthases near the ciliary base activate the Hedgehog pathway [J]. The Journal of Cell Biology, 2021, 220(1): e202002026. doi: 10.1083/jcb.202002026
|
[32] |
MAURYA D K, BOHM S, ALENIUS M. Hedgehog signaling regulates ciliary localization of mouse odorant receptors [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(44): E9386−E9394.
|
[33] |
SANCHEZ G M, ALKHORI L, HATANO E, et al. Hedgehog signaling regulates the ciliary transport of odorant receptors in Drosophila [J]. Cell Reports, 2016, 14(3): 464−470. doi: 10.1016/j.celrep.2015.12.059
|