• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
ZENG J, CHEN Y T, CAI M Q, et al. Functions of MeUGT25 in Resistance of Cassava to Bacterial Wilt Disease [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1453−1458 doi: 10.19303/j.issn.1008-0384.2023.12.009
Citation: ZENG J, CHEN Y T, CAI M Q, et al. Functions of MeUGT25 in Resistance of Cassava to Bacterial Wilt Disease [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1453−1458 doi: 10.19303/j.issn.1008-0384.2023.12.009

Functions of MeUGT25 in Resistance of Cassava to Bacterial Wilt Disease

doi: 10.19303/j.issn.1008-0384.2023.12.009
  • Received Date: 2023-07-21
  • Rev Recd Date: 2023-10-11
  • Available Online: 2023-12-21
  • Publish Date: 2023-12-28
  •   Objective   Disease resistance to Xamthomonas axonopodis pv. Manihotis (Xam) of cassava related to MeUGT25, a UDP-glycosyltransferases (UGT) gene, was studied for breeding purposes.   Method  MeUGT25 was cloned from cassava leaves (SC124) by RT-PCR. Subsequently, virus-induced gene silencing (VIGS) andXam infection challenge experiment were conducted to confirm the disease resistance of the plant.   Result  The expression of MeUGT25 was significantly induced by the presence of Xam. In 3 transgenic plants, qRT-PCR showed reductions in MeUGT25 expression by 71%, 70%, and 69%. In 6 d after an Xam−inoculation, the bacterial counts on the leaves of MeUGT25V-2 and MeUGT25V-3 plants increased significantly, but not of MeUGT25V-1. On the other hand, apparent plaques appeared on the leaves of the MeUGT25 gene silencing plants indicating the lowered MeUGT25 expression had significantly reduced the resistance of cassava to Xam infection.   Conclusion   Reduction of MeUGT25 expression in cassava mitigated the ability of the leaves to resist invasion by Xam suggesting a positive regulatory role of the gene played in the disease resistance.
  • loading
  • [1]
    张鹏, 杨俊, 周文智, 等. 能源木薯高淀粉抗逆分子育种研究进展与展望 [J]. 生命科学, 2014, 26(5):465−473. doi: 10.13376/j.cbls/2014069

    ZHANG P, YANG J, ZHOU W Z, et al. Progress and perspective of cassava molecular breeding for bioenergy development [J]. Chinese Bulletin of Life Sciences, 2014, 26(5): 465−473.(in Chinese) doi: 10.13376/j.cbls/2014069
    [2]
    BOURNE Y, HENRISSAT B. Glycoside hydrolases and glycosyltransferases: Families and functional modules [J]. Current Opinion in Structural Biology, 2001, 11(5): 593−600. doi: 10.1016/S0959-440X(00)00253-0
    [3]
    PAQUETTE S, MØLLER B L, BAK S. On the origin of family 1 plant glycosyltransferases [J]. Phytochemistry, 2003, 62(3): 399−413. doi: 10.1016/S0031-9422(02)00558-7
    [4]
    CAI J H, JOZWIAK A, HOLOIDOVSKY L, et al. Glycosylation of N-hydroxy-pipecolic acid equilibrates between systemic acquired resistance response and plant growth [J]. Molecular Plant, 2021, 14(3): 440−455. doi: 10.1016/j.molp.2020.12.018
    [5]
    LIU Y Q, WANG Q, LIU X N, et al. pUGTdb: A comprehensive database of plant UDP-dependent glycosyltransferases [J]. Molecular Plant, 2023, 16(4): 643−646. doi: 10.1016/j.molp.2023.01.003
    [6]
    LI Q, YU H M, MENG X F, et al. Ectopic expression of glycosyltransferase UGT76E11 increases flavonoid accumulation and enhances abiotic stress tolerance in Arabidopsis [J]. Plant Biology, 2018, 20(1): 10−19. doi: 10.1111/plb.12627
    [7]
    WU C L, DAI J, CHEN Z S, et al. Comprehensive analysis and expression profiles of cassava UDP-glycosyltransferases (UGT) family reveal their involvement in development and stress responses in cassava [J]. Genomics, 2021, 113(5): 3415−3429. doi: 10.1016/j.ygeno.2021.08.004
    [8]
    黄洁, 李开绵, 叶剑秋, 等. 我国的木薯优势区域概述 [J]. 广西农业科学, 2008, 39(1):104−108.

    HUANG J, LI K M, YE J Q, et al. A summary review of dominant regions of cassava growing in China [J]. Guangxi Agricultural Sciences, 2008, 39(1): 104−108.(in Chinese)
    [9]
    CAMPBELL J, DAVIES G, et al. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities[J]. The Biochemical Journal, 1998, 329 (Pt 3): 719.
    [10]
    JACKSON R G, KOWALCZYK M, LI Y, et al. Over-expression of an Arabidopsis gene encoding a glucosyltransferase of indole-3-acetic acid: Phenotypic characterisation of transgenic lines [J]. The Plant Journal, 2002, 32(4): 573−583. doi: 10.1046/j.1365-313X.2002.01445.x
    [11]
    HAYASHI K I. The interaction and integration of auxin signaling components [J]. Plant and Cell Physiology, 2012, 53(6): 965−975. doi: 10.1093/pcp/pcs035
    [12]
    POPPENBERGER B, FUJIOKA S, SOENO K, et al. The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(42): 15253−15258.
    [13]
    CHEN T T, LIU F F, XIAO D W, et al. The Arabidopsis UDP-glycosyltransferase75B1, conjugates abscisic acid and affects plant response to abiotic stresses [J]. Plant Molecular Biology, 2020, 102(4): 389−401.
    [14]
    DONG T, XU Z Y, PARK Y, et al. Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis [J]. Plant Physiology, 2014, 165(1): 277−289. doi: 10.1104/pp.114.239210
    [15]
    LIU Z, YAN J P, LI D K, et al. UDP-Glucosyltransferase71C5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis [J]. Plant Physiology, 2015, 167(4): 1659−1670. doi: 10.1104/pp.15.00053
    [16]
    JONES J D G, DANGL J L. The plant immune system [J]. Nature, 2006, 444(7117): 323−329. doi: 10.1038/nature05286
    [17]
    VLOT A C, DEMPSEY D A, KLESSIG D F. Salicylic Acid, a multifaceted hormone to combat disease [J]. Annual Review of Phytopathology, 2009, 47: 177−206. doi: 10.1146/annurev.phyto.050908.135202
    [18]
    CHEN L, WANG W S, WANG T, et al. Methyl salicylate glucosylation regulates plant defense signaling and systemic acquired resistance [J]. Plant Physiology, 2019, 180(4): 2167−2181. doi: 10.1104/pp.19.00091
    [19]
    CHAE E, TRAN D T N, WEIGEL D. Cooperation and conflict in the plant immune system [J]. PLoS Pathogens, 2016, 12(3): e1005452. doi: 10.1371/journal.ppat.1005452
    [20]
    PASTORCZYK-SZLENKIER M, BEDNAREK P. UGT76B1 controls the growth-immunity trade-off during systemic acquired resistance [J]. Molecular Plant, 2021, 14(4): 544−546. doi: 10.1016/j.molp.2021.03.012
    [21]
    VON SAINT PAUL V, ZHANG W, KANAWATI B, et al. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence [J]. The Plant Cell, 2011, 23(11): 4124−4145. doi: 10.1105/tpc.111.088443
    [22]
    KANNANGARA R, MOTAWIA M S, HANSEN N K K, et al. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava [J]. The Plant Journal, 2011, 68(2): 287−301. doi: 10.1111/j.1365-313X.2011.04695.x
    [23]
    MUÑOZ-BODNAR A, PEREZ-QUINTERO A L, GOMEZ-CANO F, et al. RNAseq analysis of cassava reveals similar plant responses upon infection with pathogenic and non-pathogenic strains of Xanthomonas axonopodis pv. manihotis [J]. Plant Cell Reports, 2014, 33(11): 1901−1912. doi: 10.1007/s00299-014-1667-7
    [24]
    YAN Y, HE X Y, HU W, et al. Functional analysis of MeCIPK23 and MeCBL1/9 in cassava defense response against Xanthomonas axonopodis pv. manihotis [J]. Plant Cell Reports, 2018, 37(6): 887−900. doi: 10.1007/s00299-018-2276-7
    [25]
    宋震, 李中安, 周常勇. 病毒诱导的基因沉默(VIGS)研究进展 [J]. 园艺学报, 2014, 41(9):1885−1894. doi: 10.16420/j.issn.0513-353x.2014.09.004

    SONG Z, LI Z A, ZHOU C Y. Research advances of virus-induced gene silencing(VIGS) [J]. Acta Horticulturae Sinica, 2014, 41(9): 1885−1894.(in Chinese) doi: 10.16420/j.issn.0513-353x.2014.09.004
    [26]
    GEORGE THOMPSON A M, IANCU C V, NEET K E, et al. Differences in salicylic acid glucose conjugations by UGT74F1 and UGT74F2 from Arabidopsis thaliana [J]. Scientific Reports, 2017, 7: 46629. doi: 10.1038/srep46629
    [27]
    叶威, 骆秋娴, 蔡美琪, 等. 木薯UDP依赖型糖基转移酶14基因在木薯抗病性中的功能研究 [J]. 热带作物学报, 2022, 43(7):1322−1327. doi: 10.3969/j.issn.1000-2561.2022.07.002

    YE W, LUO Q X, CAI M Q, et al. Function of MeUGT14 gene in cassava under biotic stress [J]. Chinese Journal of Tropical Crops, 2022, 43(7): 1322−1327.(in Chinese) doi: 10.3969/j.issn.1000-2561.2022.07.002
    [28]
    ZENG J, WANG C, CHEN X, et al. The lycopene β-cyclase plays a significant role in provitamin A biosynthesis in wheat endosperm [J]. BMC Plant Biology, 2015, 15: 112. doi: 10.1186/s12870-015-0514-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (964) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return