Citation: | ZHANG C K, ZHOU Z W, GUO T L, et al. Sequence and Annotation of Colletotrichum fructicola N425 Genome on Tea Plant [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1437−1444 doi: 10.19303/j.issn.1008-0384.2023.12.007 |
[1] |
刘威, 袁丁, 郭桂义, 等. 茶树炭疽病病原鉴定 [J]. 南方农业学报, 2017, 48(3):448−453.
LIU W, YUAN D, GUO G Y, et al. Identification of anthracnose pathogen in tea plant [J]. Journal of Southern Agriculture, 2017, 48(3): 448−453.(in Chinese)
|
[2] |
WANG Y C, HAO X Y, WANG L, et al. Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L. ) O. Kuntze) in China [J]. Scientific Reports, 2016, 6: 35287. doi: 10.1038/srep35287
|
[3] |
GUO M, PAN Y M, DAI Y L, et al. First report of brown blight disease caused by Colletotrichum gloeosporioides on Camellia sinensis in Anhui Province, China [J]. Plant Disease, 2014, 98(2): 284.
|
[4] |
O'CONNELL R J, THON M R, HACQUARD S, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses [J]. Nature Genetics, 2012, 44(9): 1060−1065. doi: 10.1038/ng.2372
|
[5] |
DEAN R A, TALBOT N J, EBBOLE D J, et al. The genome sequence of the rice blast fungus Magnaporthe grisea [J]. Nature, 2005, 434(7036): 980−986. doi: 10.1038/nature03449
|
[6] |
CUOMO C A, GÜLDENER U, XU J R, et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization [J]. Science, 2007, 317(5843): 1400−1402. doi: 10.1126/science.1143708
|
[7] |
LIANG X F, WANG B, DONG Q Y, et al. Pathogenic adaptations of Colletotrichum fungi revealed by genome wide gene family evolutionary analyses [J]. PLoS One, 2018, 13(4): e0196303. doi: 10.1371/journal.pone.0196303
|
[8] |
LIANG X F, WEI T Y, CAO M Y, et al. The MAP kinase CfPMK1 is a key regulator of pathogenesis, development, and stress tolerance of Colletotrichum fructicola [J]. Frontiers in Microbiology, 2019, 10: 1070. doi: 10.3389/fmicb.2019.01070
|
[9] |
BI F C, MENT D, LURIA N, et al. Mutation of AREA affects growth, sporulation, nitrogen regulation, and pathogenicity in Colletotrichum gloeosporioides [J]. Fungal Genetics and Biology, 2017, 99: 29−39. doi: 10.1016/j.fgb.2016.12.006
|
[10] |
PAN Y T, LI L W, YANG J Y, et al. Involvement of protein kinase CgSat4 in potassium uptake, cation tolerance, and full virulence in Colletotrichum gloeosporioides [J]. Frontiers in Plant Science, 2022, 13: 773898. doi: 10.3389/fpls.2022.773898
|
[11] |
YANG G Y, YANG J, ZHANG Q W, et al. The effector protein CgNLP1 of Colletotrichum gloeosporioides affects invasion and disrupts nuclear localization of necrosis-induced transcription factor HbMYB8-like to suppress plant defense signaling [J]. Frontiers in Microbiology, 2022, 13: 911479. doi: 10.3389/fmicb.2022.911479
|
[12] |
GAN R C, ZHANG S P, LI H. Cell wall integrity mediated by CfCHS1 is important for growth, stress responses and pathogenicity in Colletotrichum fructicola [J]. Journal of Fungi, 2023, 9(6): 643. doi: 10.3390/jof9060643
|
[13] |
KONG Y Y, YUAN Y L, YANG M H, et al. CfCpmd1 regulates pathogenicity and sexual development of plus and minus strains in Colletotrichum fructicola causing Glomerella leaf spot on apple in China [J]. Phytopathology, 2023, 113(10): 1985−1993.
|
[14] |
彭成彬, 陈美霞, 魏日凤, 等. 茶树炭疽菌分离鉴定与遗传转化体系建立 [J]. 西南农业学报, 2021, 34(10):2167−2173.
PENG C B, CHEN M X, WEI R F, et al. Isolation and identification of Anthrax from tea plant and establishment of genetic transformation system [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(10): 2167−2173.(in Chinese)
|
[15] |
XIA Y M, CHEN F S, DU Y, et al. A modified SDS-based DNA extraction method from raw soybean [J]. Bioscience Reports, 2019, 39(2): BSR20182271. doi: 10.1042/BSR20182271
|
[16] |
顾鑫, 杨晓贺, 姚亮亮, 等. 大豆灰斑病菌Race15的全基因组测序分析 [J]. 大豆科学, 2021, 40(4):466−475.
GU X, YANG X H, YAO L L, et al. Whole-genome sequencing and analysis of Cercospora sojina race 15 [J]. Soybean Science, 2021, 40(4): 466−475.(in Chinese)
|
[17] |
WEI W, XIONG Y, ZHU W J, et al. Colletotrichum higginsianum mitogen-activated protein kinase ChMK1: Role in growth, cell wall integrity, colony melanization, and pathogenicity [J]. Frontiers in Microbiology, 2016, 7: 1212.
|
[18] |
SUN Y J, WANG Y L, TIAN C M. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides [J]. Fungal Genetics and Biology, 2016, 95: 58−66. doi: 10.1016/j.fgb.2016.08.006
|
[19] |
HWANG C S, FLAISHMAN M A, KOLATTUKUDY P E. Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides and a marked decrease in virulence by disruption of this gene [J]. The Plant Cell, 1995, 7(2): 183−193.
|
[20] |
NGUYEN Q B, KADOTANI N, KASAHARA S, et al. Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system [J]. Molecular Microbiology, 2008, 68(6): 1348−1365. doi: 10.1111/j.1365-2958.2008.06242.x
|
[21] |
LIU X H, CHEN S M, GAO H M, et al. The small GTPase MoYpt7 is required for membrane fusion in autophagy and pathogenicity of Magnaporthe oryzae [J]. Environmental Microbiology, 2015, 17(11): 4495−4510. doi: 10.1111/1462-2920.12903
|
[22] |
TANAKA S, YAMADA K, YABUMOTO K, et al. Saccharomyces cerevisiae SSD1 orthologues are essential for host infection by the ascomycete plant pathogens Colletotrichum lagenarium and Magnaporthe grisea [J]. Molecular Microbiology, 2007, 64(5): 1332−1349. doi: 10.1111/j.1365-2958.2007.05742.x
|
[23] |
YUAN Q F, CHEN M J, YAN Y Q, et al. ChSte7 is required for vegetative growth and various plant infection processes in Colletotrichum higginsianum[J]. BioMed Research International, 2016: 1−11.
|
[24] |
CHEN J S, ZHENG W, ZHENG S Q, et al. Rac1 is required for pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen Magnaporthe grisea [J]. PLoS Pathogens, 2008, 4(11): e1000202. doi: 10.1371/journal.ppat.1000202
|
[25] |
PARISOT D, DUFRESNE M, VENEAULT C, et al. clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum [J]. Molecular Genetics and Genomics, 2002, 268(2): 139−151. doi: 10.1007/s00438-002-0744-8
|
[26] |
KORN M, SCHMIDPETER J, DAHL M, et al. A genetic screen for pathogenicity genes in the hemibiotrophic fungus Colletotrichum higginsianum identifies the plasma membrane proton pump Pma2 required for host penetration [J]. PLoS One, 2015, 10(5): e0125960. doi: 10.1371/journal.pone.0125960
|
[27] |
OLIVEIRA-GARCIA E, DEISING H B. The glycosylphosphatidylinositol anchor biosynthesis genes GPI12, GAA1, and GPI8 are essential for cell-wall integrity and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola [J]. Molecular Plant-Microbe Interactions, 2016, 29(11): 889−901. doi: 10.1094/MPMI-09-16-0175-R
|
[28] |
LUDWIG N, LÖHRER M, HEMPEL M, et al. Melanin is not required for turgor generation but enhances cell-wall rigidity in appressoria of the corn pathogen Colletotrichum graminicola [J]. Molecular Plant-Microbe Interactions, 2014, 27(4): 315−327. doi: 10.1094/MPMI-09-13-0267-R
|
[29] |
SON H, LEE J, PARK A R, et al. ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae [J]. Fungal Genetics and Biology, 2011, 48(4): 408−417. doi: 10.1016/j.fgb.2011.01.002
|
[30] |
TAKANO Y, KOMEDA K, KOJIMA K, et al. Proper regulation of cyclic AMP-dependent protein kinase is required for growth, conidiation, and appressorium function in the anthracnose fungus Colletotrichum lagenarium [J]. Molecular Plant-Microbe Interactions, 2001, 14(10): 1149−1157. doi: 10.1094/MPMI.2001.14.10.1149
|
[31] |
JAIN S, AKIYAMA K, TAKATA R, et al. Signaling via the G protein alpha subunit FGA2 is necessary for pathogenesis in Fusarium oxysporum [J]. FEMS Microbiology Letters, 2005, 243(1): 165−172. doi: 10.1016/j.femsle.2004.12.009
|
[32] |
ZHENG W, CHEN J S, LIU W D, et al. A Rho3 homolog is essential for appressorium development and pathogenicity of Magnaporthe grisea [J]. Eukaryotic Cell, 2007, 6(12): 2240−2250. doi: 10.1128/EC.00104-07
|
[33] |
ZHAO Y L, ZHOU T T, GUO H S. Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae [J]. PLoS Pathogens, 2016, 12(7): e1005793. doi: 10.1371/journal.ppat.1005793
|
[34] |
LUO K, GUO J, HE D J, et al. Deoxynivalenol accumulation and detoxification in cereals and its potential role in wheat-Fusarium graminearum interactions [J]. aBIOTECH, 2023, 4(2): 155−171. doi: 10.1007/s42994-023-00096-7
|
[35] |
GUPTA L, VERMANI M, KAUR AHLUWALIA S, et al. Molecular virulence determinants of Magnaporthe oryzae: Disease pathogenesis and recent interventions for disease management in rice plant [J]. Mycology, 2021, 12(3): 174−187. doi: 10.1080/21501203.2020.1868594
|
[36] |
LI G T, ZHOU X Y, XU J R. Genetic control of infection-related development in Magnaporthe oryzae [J]. Current Opinion in Microbiology, 2012, 15(6): 678−684. doi: 10.1016/j.mib.2012.09.004
|
[37] |
ZHANG C K, WANG Y, WANG J Q, et al. Functional characterization of Rho family small GTPases in Fusarium graminearum [J]. Fungal Genetics and Biology, 2013, 61: 90−99. doi: 10.1016/j.fgb.2013.09.001
|
[38] |
KIM Y K, WANG Y H, LIU Z M, et al. Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioides conidia as a sterol glycosyl transferase, a novel fungal virulence factor [J]. The Plant Journal, 2002, 30(2): 177−187. doi: 10.1046/j.1365-313X.2002.01284.x
|
[39] |
SKAMNIOTI P, FURLONG R F, GURR S J. Evolutionary history of the ancient cutinase family in five filamentous Ascomycetes reveals differential gene duplications and losses and in Magnaporthe grisea shows evidence of sub- and neo-functionalization [J]. The New Phytologist, 2008, 180(3): 711−721. doi: 10.1111/j.1469-8137.2008.02598.x
|
[40] |
SKAMNIOTI P, GURR S J. Magnaporthe grisea Cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence [J]. The Plant Cell, 2007, 19(8): 2674−2689. doi: 10.1105/tpc.107.051219
|