• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
ZHANG C K, ZHOU Z W, GUO T L, et al. Sequence and Annotation of Colletotrichum fructicola N425 Genome on Tea Plant [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1437−1444 doi: 10.19303/j.issn.1008-0384.2023.12.007
Citation: ZHANG C K, ZHOU Z W, GUO T L, et al. Sequence and Annotation of Colletotrichum fructicola N425 Genome on Tea Plant [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1437−1444 doi: 10.19303/j.issn.1008-0384.2023.12.007

Sequence and Annotation of Colletotrichum fructicola N425 Genome on Tea Plant

doi: 10.19303/j.issn.1008-0384.2023.12.007
  • Received Date: 2023-08-29
  • Rev Recd Date: 2023-09-30
  • Available Online: 2023-12-21
  • Publish Date: 2023-12-28
  •   Objective  Sequence and annotation of Colletotrichum fructicola N425 genomefrom a diseased tea plant were determined, and primary virulence-related genes identified.   Method   Whole genome of N425 was sequenced and assembled using the Illumina HiSeq2500 PE150 platform. Predicted protein structure and functional annotation of the genes were obtained using the NR, KEGG, and KOG databases.   Results   The genome was approximately 56.3 Mbp in length with 53.2% of G+C, 10 157 protein-coding genes, and several types of non-protein coding sequences. Of the genes, 1 356 were annotated in the PHI database that included 140 as the loss of pathogenicity, 720 in the CAZy database, and 302 related to the secondary metabolites. Some of these genes were involved in the cAMP-PKA and MAPK cascade signaling pathways as well as other pathogenic processes, such as host cell wall degradation, which could be responsible for the virulence on tea plants.   Conclusion   The sequence and annotation of whole C. fructicola N425 genome were successfully obtained, and probable virulence-related genes identified.
  • loading
  • [1]
    刘威, 袁丁, 郭桂义, 等. 茶树炭疽病病原鉴定 [J]. 南方农业学报, 2017, 48(3):448−453.

    LIU W, YUAN D, GUO G Y, et al. Identification of anthracnose pathogen in tea plant [J]. Journal of Southern Agriculture, 2017, 48(3): 448−453.(in Chinese)
    [2]
    WANG Y C, HAO X Y, WANG L, et al. Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L. ) O. Kuntze) in China [J]. Scientific Reports, 2016, 6: 35287. doi: 10.1038/srep35287
    [3]
    GUO M, PAN Y M, DAI Y L, et al. First report of brown blight disease caused by Colletotrichum gloeosporioides on Camellia sinensis in Anhui Province, China [J]. Plant Disease, 2014, 98(2): 284.
    [4]
    O'CONNELL R J, THON M R, HACQUARD S, et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses [J]. Nature Genetics, 2012, 44(9): 1060−1065. doi: 10.1038/ng.2372
    [5]
    DEAN R A, TALBOT N J, EBBOLE D J, et al. The genome sequence of the rice blast fungus Magnaporthe grisea [J]. Nature, 2005, 434(7036): 980−986. doi: 10.1038/nature03449
    [6]
    CUOMO C A, GÜLDENER U, XU J R, et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization [J]. Science, 2007, 317(5843): 1400−1402. doi: 10.1126/science.1143708
    [7]
    LIANG X F, WANG B, DONG Q Y, et al. Pathogenic adaptations of Colletotrichum fungi revealed by genome wide gene family evolutionary analyses [J]. PLoS One, 2018, 13(4): e0196303. doi: 10.1371/journal.pone.0196303
    [8]
    LIANG X F, WEI T Y, CAO M Y, et al. The MAP kinase CfPMK1 is a key regulator of pathogenesis, development, and stress tolerance of Colletotrichum fructicola [J]. Frontiers in Microbiology, 2019, 10: 1070. doi: 10.3389/fmicb.2019.01070
    [9]
    BI F C, MENT D, LURIA N, et al. Mutation of AREA affects growth, sporulation, nitrogen regulation, and pathogenicity in Colletotrichum gloeosporioides [J]. Fungal Genetics and Biology, 2017, 99: 29−39. doi: 10.1016/j.fgb.2016.12.006
    [10]
    PAN Y T, LI L W, YANG J Y, et al. Involvement of protein kinase CgSat4 in potassium uptake, cation tolerance, and full virulence in Colletotrichum gloeosporioides [J]. Frontiers in Plant Science, 2022, 13: 773898. doi: 10.3389/fpls.2022.773898
    [11]
    YANG G Y, YANG J, ZHANG Q W, et al. The effector protein CgNLP1 of Colletotrichum gloeosporioides affects invasion and disrupts nuclear localization of necrosis-induced transcription factor HbMYB8-like to suppress plant defense signaling [J]. Frontiers in Microbiology, 2022, 13: 911479. doi: 10.3389/fmicb.2022.911479
    [12]
    GAN R C, ZHANG S P, LI H. Cell wall integrity mediated by CfCHS1 is important for growth, stress responses and pathogenicity in Colletotrichum fructicola [J]. Journal of Fungi, 2023, 9(6): 643. doi: 10.3390/jof9060643
    [13]
    KONG Y Y, YUAN Y L, YANG M H, et al. CfCpmd1 regulates pathogenicity and sexual development of plus and minus strains in Colletotrichum fructicola causing Glomerella leaf spot on apple in China [J]. Phytopathology, 2023, 113(10): 1985−1993.
    [14]
    彭成彬, 陈美霞, 魏日凤, 等. 茶树炭疽菌分离鉴定与遗传转化体系建立 [J]. 西南农业学报, 2021, 34(10):2167−2173.

    PENG C B, CHEN M X, WEI R F, et al. Isolation and identification of Anthrax from tea plant and establishment of genetic transformation system [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(10): 2167−2173.(in Chinese)
    [15]
    XIA Y M, CHEN F S, DU Y, et al. A modified SDS-based DNA extraction method from raw soybean [J]. Bioscience Reports, 2019, 39(2): BSR20182271. doi: 10.1042/BSR20182271
    [16]
    顾鑫, 杨晓贺, 姚亮亮, 等. 大豆灰斑病菌Race15的全基因组测序分析 [J]. 大豆科学, 2021, 40(4):466−475.

    GU X, YANG X H, YAO L L, et al. Whole-genome sequencing and analysis of Cercospora sojina race 15 [J]. Soybean Science, 2021, 40(4): 466−475.(in Chinese)
    [17]
    WEI W, XIONG Y, ZHU W J, et al. Colletotrichum higginsianum mitogen-activated protein kinase ChMK1: Role in growth, cell wall integrity, colony melanization, and pathogenicity [J]. Frontiers in Microbiology, 2016, 7: 1212.
    [18]
    SUN Y J, WANG Y L, TIAN C M. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides [J]. Fungal Genetics and Biology, 2016, 95: 58−66. doi: 10.1016/j.fgb.2016.08.006
    [19]
    HWANG C S, FLAISHMAN M A, KOLATTUKUDY P E. Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides and a marked decrease in virulence by disruption of this gene [J]. The Plant Cell, 1995, 7(2): 183−193.
    [20]
    NGUYEN Q B, KADOTANI N, KASAHARA S, et al. Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system [J]. Molecular Microbiology, 2008, 68(6): 1348−1365. doi: 10.1111/j.1365-2958.2008.06242.x
    [21]
    LIU X H, CHEN S M, GAO H M, et al. The small GTPase MoYpt7 is required for membrane fusion in autophagy and pathogenicity of Magnaporthe oryzae [J]. Environmental Microbiology, 2015, 17(11): 4495−4510. doi: 10.1111/1462-2920.12903
    [22]
    TANAKA S, YAMADA K, YABUMOTO K, et al. Saccharomyces cerevisiae SSD1 orthologues are essential for host infection by the ascomycete plant pathogens Colletotrichum lagenarium and Magnaporthe grisea [J]. Molecular Microbiology, 2007, 64(5): 1332−1349. doi: 10.1111/j.1365-2958.2007.05742.x
    [23]
    YUAN Q F, CHEN M J, YAN Y Q, et al. ChSte7 is required for vegetative growth and various plant infection processes in Colletotrichum higginsianum[J]. BioMed Research International, 2016: 1−11.
    [24]
    CHEN J S, ZHENG W, ZHENG S Q, et al. Rac1 is required for pathogenicity and Chm1-dependent conidiogenesis in rice fungal pathogen Magnaporthe grisea [J]. PLoS Pathogens, 2008, 4(11): e1000202. doi: 10.1371/journal.ppat.1000202
    [25]
    PARISOT D, DUFRESNE M, VENEAULT C, et al. clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum [J]. Molecular Genetics and Genomics, 2002, 268(2): 139−151. doi: 10.1007/s00438-002-0744-8
    [26]
    KORN M, SCHMIDPETER J, DAHL M, et al. A genetic screen for pathogenicity genes in the hemibiotrophic fungus Colletotrichum higginsianum identifies the plasma membrane proton pump Pma2 required for host penetration [J]. PLoS One, 2015, 10(5): e0125960. doi: 10.1371/journal.pone.0125960
    [27]
    OLIVEIRA-GARCIA E, DEISING H B. The glycosylphosphatidylinositol anchor biosynthesis genes GPI12, GAA1, and GPI8 are essential for cell-wall integrity and pathogenicity of the maize anthracnose fungus Colletotrichum graminicola [J]. Molecular Plant-Microbe Interactions, 2016, 29(11): 889−901. doi: 10.1094/MPMI-09-16-0175-R
    [28]
    LUDWIG N, LÖHRER M, HEMPEL M, et al. Melanin is not required for turgor generation but enhances cell-wall rigidity in appressoria of the corn pathogen Colletotrichum graminicola [J]. Molecular Plant-Microbe Interactions, 2014, 27(4): 315−327. doi: 10.1094/MPMI-09-13-0267-R
    [29]
    SON H, LEE J, PARK A R, et al. ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae [J]. Fungal Genetics and Biology, 2011, 48(4): 408−417. doi: 10.1016/j.fgb.2011.01.002
    [30]
    TAKANO Y, KOMEDA K, KOJIMA K, et al. Proper regulation of cyclic AMP-dependent protein kinase is required for growth, conidiation, and appressorium function in the anthracnose fungus Colletotrichum lagenarium [J]. Molecular Plant-Microbe Interactions, 2001, 14(10): 1149−1157. doi: 10.1094/MPMI.2001.14.10.1149
    [31]
    JAIN S, AKIYAMA K, TAKATA R, et al. Signaling via the G protein alpha subunit FGA2 is necessary for pathogenesis in Fusarium oxysporum [J]. FEMS Microbiology Letters, 2005, 243(1): 165−172. doi: 10.1016/j.femsle.2004.12.009
    [32]
    ZHENG W, CHEN J S, LIU W D, et al. A Rho3 homolog is essential for appressorium development and pathogenicity of Magnaporthe grisea [J]. Eukaryotic Cell, 2007, 6(12): 2240−2250. doi: 10.1128/EC.00104-07
    [33]
    ZHAO Y L, ZHOU T T, GUO H S. Hyphopodium-specific VdNoxB/VdPls1-dependent ROS-Ca2+ signaling is required for plant infection by Verticillium dahliae [J]. PLoS Pathogens, 2016, 12(7): e1005793. doi: 10.1371/journal.ppat.1005793
    [34]
    LUO K, GUO J, HE D J, et al. Deoxynivalenol accumulation and detoxification in cereals and its potential role in wheat-Fusarium graminearum interactions [J]. aBIOTECH, 2023, 4(2): 155−171. doi: 10.1007/s42994-023-00096-7
    [35]
    GUPTA L, VERMANI M, KAUR AHLUWALIA S, et al. Molecular virulence determinants of Magnaporthe oryzae: Disease pathogenesis and recent interventions for disease management in rice plant [J]. Mycology, 2021, 12(3): 174−187. doi: 10.1080/21501203.2020.1868594
    [36]
    LI G T, ZHOU X Y, XU J R. Genetic control of infection-related development in Magnaporthe oryzae [J]. Current Opinion in Microbiology, 2012, 15(6): 678−684. doi: 10.1016/j.mib.2012.09.004
    [37]
    ZHANG C K, WANG Y, WANG J Q, et al. Functional characterization of Rho family small GTPases in Fusarium graminearum [J]. Fungal Genetics and Biology, 2013, 61: 90−99. doi: 10.1016/j.fgb.2013.09.001
    [38]
    KIM Y K, WANG Y H, LIU Z M, et al. Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioides conidia as a sterol glycosyl transferase, a novel fungal virulence factor [J]. The Plant Journal, 2002, 30(2): 177−187. doi: 10.1046/j.1365-313X.2002.01284.x
    [39]
    SKAMNIOTI P, FURLONG R F, GURR S J. Evolutionary history of the ancient cutinase family in five filamentous Ascomycetes reveals differential gene duplications and losses and in Magnaporthe grisea shows evidence of sub- and neo-functionalization [J]. The New Phytologist, 2008, 180(3): 711−721. doi: 10.1111/j.1469-8137.2008.02598.x
    [40]
    SKAMNIOTI P, GURR S J. Magnaporthe grisea Cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence [J]. The Plant Cell, 2007, 19(8): 2674−2689. doi: 10.1105/tpc.107.051219
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (1129) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return