• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
LI T T, PAN Q Y, WU J H. Expressions and Functions of Flowering Locus Ts in Narcissus tazetta var. chinensis Roem [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1420−1427 doi: 10.19303/j.issn.1008-0384.2023.12.005
Citation: LI T T, PAN Q Y, WU J H. Expressions and Functions of Flowering Locus Ts in Narcissus tazetta var. chinensis Roem [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1420−1427 doi: 10.19303/j.issn.1008-0384.2023.12.005

Expressions and Functions of Flowering Locus Ts in Narcissus tazetta var. chinensis Roem

doi: 10.19303/j.issn.1008-0384.2023.12.005
  • Received Date: 2023-09-12
  • Rev Recd Date: 2023-11-02
  • Available Online: 2024-01-06
  • Publish Date: 2023-12-28
  •   Objective  Expressions and functions of Flowering Locus T (FT), the genes widely involved in plant growth, flowering regulation, root development, and seed germination, in Chinese narcissus were studied.   Method  Four FTs were identified from the transcriptome data on Narcissus tazetta var. chinensis Roem by bioinformatics analysis. Expressions of the genes in various tissues and flower buds at differentiation stages were determined by fluorescence quantitative PCR and further confirmed by overexpressing it in Arabidopsis thaliana.   Result  The 4 homologous FTs, i.e., NtFT1, NtFT2, NtFT3, and NtFT4, were cloned using RT-PCR. All of them, except NtFT3, had conserved motifs. Phylogenetically; NtFT1 belonged to the FT-like I branch, while NtFT2, NtFT3, and NtFT4, to the FT-like II branch. In tissues, organs, and flower buds at differentiation stages, they expressed differently. The highest expressions of NtFT1 and NtFT3 were in the flowers, those of NtFT2 in the leaves, and NtFT4 in the scales. At different flower bud differentiation stages, the expressions differed significantly as well, as NtFT1 decreased followed as an increase during differentiation, but NtFT2 changed little throughout. The expressions of NtFT3 and NtFT4 were relatively low in the entire flower bud differentiation period. The ectopic transformation of A. thaliana showed the overexpressed NtFT1 and NtFT2 led to early flowering in comparison to the wild type. But no effect was associated with NtFT3, but delayed flowering was found on the transgenic NtFT4 Arabidopsis plants. In addition, the expressions of SOC1, LFY, and AP1 in the Arabidopsis plants rose with NtFT1 overexpression.   Conclusion   There were multiple FTs in Chinese narcissus that differed in regulating the flowering—NtFT1 promoted, while NtFT4 inhibited, the process.
  • loading
  • [1]
    FORNARA F, DE MONTAIGU A, COUPLAND G. SnapShot: Control of flowering in Arabidopsis [J]. Cell, 2010, 141(3): 550−550.e2. doi: 10.1016/j.cell.2010.04.024
    [2]
    张艺能, 周玉萍, 陈琼华, 等. 拟南芥开花时间调控的分子基础 [J]. 植物学报, 2014, 49(4):469−482. doi: 10.3724/SP.J.1259.2014.00469

    ZHANG Y N, ZHOU Y P, CHEN Q H, et al. Molecular basis of flowering time regulation in Arabidopsis [J]. Chinese Bulletin of Botany, 2014, 49(4): 469−482.(in Chinese) doi: 10.3724/SP.J.1259.2014.00469
    [3]
    KARLGREN A, GYLLENSTRAND N, KÄLLMAN T, et al. Evolution of the PEBP gene family in plants: Functional diversification in seed plant evolution [J]. Plant Physiology, 2011, 156(4): 1967−1977. doi: 10.1104/pp.111.176206
    [4]
    BANFIELD M J, BARKER J J, PERRY A C, et al. Function from structure? The crystal structure of human phosphatidylethanolamine-binding protein suggests a role in membrane signal transduction [J]. Structure, 1998, 6(10): 1245−1254. doi: 10.1016/S0969-2126(98)00125-7
    [5]
    VALVERDE F, MOURADOV A, SOPPE W, et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering [J]. Science, 2004, 303(5660): 1003−1006. doi: 10.1126/science.1091761
    [6]
    张乔松, 杨伟儿. 中国水仙花芽分化及贮藏期外界因子对花序数的影响 [J]. 园艺学报, 1987, 14(2):139−143,145.

    ZHANG Q S, YANG W E. On flower-bud differentiation of Chinese narcissus and the effect of external factors in storage on flower percentage [J]. Acta Horticulturae Sinica, 1987, 14(2): 139−143,145.(in Chinese)
    [7]
    申艳红, 姜涛, 赵湾湾, 等. 乙烯处理水仙催多花技术和机理的研究 [J]. 农业生物技术学报, 2019, 27(6):1003−1015.

    SHEN Y H, JIANG T, ZHAO W W, et al. Study on technology and mechanism of ethylene treatment promotes the formation of more flowers of Narcissus tazetta var. chinensis [J]. Journal of Agricultural Biotechnology, 2019, 27(6): 1003−1015.(in Chinese)
    [8]
    ODA A, NARUMI T, LI T P, et al. CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums [J]. Journal of Experimental Botany, 2012, 63(3): 1461−1477. doi: 10.1093/jxb/err387
    [9]
    MAO Y C, SUN J, CAO P P, et al. Functional analysis of alternative splicing of the FLOWERING LOCUS T orthologous gene in Chrysanthemum morifolium [J]. Horticulture Research, 2016, 3: 16058. doi: 10.1038/hortres.2016.58
    [10]
    WANG L J, SUN J, REN L P, et al. CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer chrysanthemum [J]. Plant Biotechnology Journal, 2020, 18(7): 1562−1572. doi: 10.1111/pbi.13322
    [11]
    SUN J, WANG H, REN L P, et al. CmFTL2 is involved in the photoperiod- and sucrose-mediated control of flowering time in chrysanthemum [J]. Horticulture Research, 2017, 4: 17001. doi: 10.1038/hortres.2017.1
    [12]
    OTAGAKI S, OGAWA Y, HIBRAND-SAINT OYANT L, et al. Genotype of FLOWERING LOCUS T homologue contributes to flowering time differences in wild and cultivated roses [J]. Plant Biology, 2015, 17(4): 808−815. doi: 10.1111/plb.12299
    [13]
    CHEN L, CAI Y P, QU M N, et al. Soybean adaption to high-latitude regions is associated with natural variations of GmFT2b, an ortholog of FLOWERING LOCUS T [J]. Plant, Cell & Environment, 2020, 43(4): 934−944.
    [14]
    WU L, LI F, DENG Q H, et al. Identification and characterization of the FLOWERING LOCUS T/terminal flower 1 gene family in petunia [J]. DNA and Cell Biology, 2019, 38(9): 982−995. doi: 10.1089/dna.2019.4720
    [15]
    HELLER W P, YING Z T, DAVENPORT T L, et al. Identification of members of the Dimocarpus longan flowering locus T gene family with divergent functions in flowering [J]. Tropical Plant Biology, 2014, 7(1): 19−29. doi: 10.1007/s12042-013-9134-0
    [16]
    COELHO C P, MINOW M A A, CHALFUN-JÚNIOR A, et al. Putative sugarcane FT/TFL1 genes delay flowering time and alter reproductive architecture in Arabidopsis [J]. Frontiers in Plant Science, 2014, 5: 221.
    [17]
    NAVARRO C, ABELENDA J A, CRUZ-ORÓ E, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T [J]. Nature, 2011, 478(7367): 119−122. doi: 10.1038/nature10431
    [18]
    NIWA M, DAIMON Y, KUROTANI K I, et al. BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis [J]. The Plant Cell, 2013, 25(4): 1228−1242. doi: 10.1105/tpc.112.109090
    [19]
    KINOSHITA T, ONO N, HAYASHI Y, et al. FLOWERING LOCUS T regulates stomatal opening [J]. Current Biology:CB, 2011, 21(14): 1232−1238. doi: 10.1016/j.cub.2011.06.025
    [20]
    CHEN M, PENFIELD S. Feedback regulation of COOLAIR expression controls seed dormancy and flowering time [J]. Science, 2018, 360(6392): 1014−1017. doi: 10.1126/science.aar7361
    [21]
    ANDRÉ D, MARCON A, LEE K C, et al. FLOWERING LOCUS T paralogs control the annual growth cycle in Populus trees [J]. Current Biology:CB, 2022, 32(13): 2988−2996.e4. doi: 10.1016/j.cub.2022.05.023
    [22]
    陈洁. 水稻FT-Like基因OsFTL4的功能研究[D]. 扬州: 扬州大学, 2020.

    CHEN J. Function research of FT-like gene OsTTL4 in rice [D]. Yangzhou: Yangzhou University, 2020. (in Chinese)
    [23]
    FENG Y, ZHU L Y, PAN T F, et al. Characterization of summer dormancy in Narcissus tazetta var. Chinensis and the role of NtFTs in summer dormancy and flower differentiation [J]. Scientia Horticulturae, 2015, 183: 109−117. doi: 10.1016/j.scienta.2014.11.013
    [24]
    LI X F, JIA L Y, XU J, et al. FT-like NFT1 gene may play a role in flower transition induced by heat accumulation in Narcissus tazetta var. chinensis [J]. Plant and Cell Physiology, 2013, 54(2): 270−281. doi: 10.1093/pcp/pcs181
    [25]
    CONANT G C, WOLFE K H. Turning a hobby into a job: How duplicated genes find new functions [J]. Nature Reviews Genetics, 2008, 9(12): 938−950. doi: 10.1038/nrg2482
    [26]
    李永光, 金玉环, 郭力, 等. 小鼠耳芥PEBP基因家族全基因组鉴定及表达分析 [J]. 遗传, 2022, 44(1):80−94.

    LI Y G, JIN Y H, GUO L, et al. Genome-wide identification and expression analysis of the PEBP genes in Arabidopsis pumila [J]. Hereditas(Beijing), 2022, 44(1): 80−94.(in Chinese)
    [27]
    牛西强, 罗潇云, 康凯程, 等. 辣椒PEBP基因家族的全基因组鉴定、比较进化与组织表达分析 [J]. 园艺学报, 2021, 48(5):947−959.

    NIU X Q, LUO X Y, KANG K C, et al. Genome-wide identification, comparative evolution and expression analysis of PEBP gene family from Capsicum annuum [J]. Acta Horticulturae Sinica, 2021, 48(5): 947−959.(in Chinese)
    [28]
    JIANG X D, ZHONG M C, DONG X, et al. Rosoideae-specific duplication and functional diversification of FT-like genes in Rosaceae [J]. Horticulture Research, 2022, 9: uhac059. doi: 10.1093/hr/uhac059
    [29]
    LIU H L, LIU X, CHANG X J, et al. Large-scale analyses of angiosperm Flowering Locus T genes reveal duplication and functional divergence in monocots [J]. Frontiers in Plant Science, 2023, 13: 1039500. doi: 10.3389/fpls.2022.1039500
    [30]
    LEEGGANGERS H A, ROSILIO-BRAMI T, BIGAS-NADAL J, et al. Tulipa gesneriana and Lilium longiflorum PEBP genes and their putative roles in flowering time control [J]. Plant and Cell Physiology, 2018, 59(1): 90−106. doi: 10.1093/pcp/pcx164
    [31]
    LEE R, BALDWIN S, KENEL F, et al. FLOWERING LOCUS T genes control onion bulb formation and flowering [J]. Nature Communications, 2013, 4: 2884. doi: 10.1038/ncomms3884
    [32]
    YAN X, CAO Q Z, HE H B, et al. Functional analysis and expression patterns of members of the FLOWERING LOCUS T (FT) gene family in Lilium [J]. Plant Physiology and Biochemistry, 2021, 163: 250−260. doi: 10.1016/j.plaphy.2021.03.056
    [33]
    KOTODA N, HAYASHI H, SUZUKI M, et al. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus ×domestica borkh. ) [J]. Plant and Cell Physiology, 2010, 51(4): 561−575. doi: 10.1093/pcp/pcq021
    [34]
    朱燕宇. 小叶杨FT基因家族的克隆及功能验证[D]. 南京: 南京林业大学, 2015.

    ZHU Y Y. Cloning and functional analysis of FT gene family from Populus simonii[D]. Nanjing: Nanjing Forestry University, 2015. (in Chinese)
    [35]
    PIN P A, NILSSON O. The multifaceted roles of FLOWERING LOCUS T in plant development [J]. Plant, Cell & Environment, 2012, 35(10): 1742−1755.
    [36]
    LIU W, JIANG B J, MA L M, et al. Functional diversification of Flowering Locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation [J]. The New Phytologist, 2018, 217(3): 1335−1345. doi: 10.1111/nph.14884
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (326) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return