• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
SHI H, YAN W W, YIN D H, et al. Physiology and Expression of PIP of Hippophae rhamnoides under Salt Stress [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1414−1419 doi: 10.19303/j.issn.1008-0384.2023.12.004
Citation: SHI H, YAN W W, YIN D H, et al. Physiology and Expression of PIP of Hippophae rhamnoides under Salt Stress [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1414−1419 doi: 10.19303/j.issn.1008-0384.2023.12.004

Physiology and Expression of PIP of Hippophae rhamnoides under Salt Stress

doi: 10.19303/j.issn.1008-0384.2023.12.004
  • Received Date: 2023-03-01
  • Rev Recd Date: 2023-07-22
  • Available Online: 2023-12-21
  • Publish Date: 2023-12-28
  •   Objective  Mechanism of aquaporins relating to the plasma membrane intrinsic proteins (PIPs) of Hippophae rhamnoides subsp. sinensis in response to salt stress was studied.  Methods  Bioinformatics of HrPIP was analyzed. Physiological indexes and expressions of the gene in tissues of H. rhamnoides under normal and imposed salt stresses of 200, 400, 600, 800, or 1,000 mmol ·L−1 NaCl were determined.   Results   Located in the cell membrane, HrPIP encoded 110 amino acids. The hydrophobic protein had no signal peptide or transmembrane helix region. As salt stress intensified, the RWC decreased gradually, and the chlorophyll content declined initially followed by an incline. The permeability of the plasma membrane and the content of MDA changed slightly when the salt concentration was low but increased significantly when the concentration was high. The 1000 mmol·L−1 salt stress induced declined MDA but continuously rising membrane permeability. The expressions of HrPIP in different organs varied by the increasing salt stress. In roots, it rose at lower salt concentrations then declined but rose again at high salt levels. In the leaves, the opposite trend was observed, whereas it was in an “M” pattern in the stems.   Conclusion  H.rhamnoides subsp. sinensis was salt resistant to a certain degree. Under the stress, by altering the HrPIP expression to increase water absorption in roots, transport in stems, and retention in leaves the plant manipulated the cellular salt concentration to achieve an improved stress tolerance.
  • loading
  • [1]
    曲悦, 王姝瑶, 郝鑫, 等. 盐胁迫诱导植物交叉适应及其信号转导 [J]. 植物生理学报, 2022, 58(6):1045−1054. doi: 10.13592/j.cnki.ppj.300027

    QU Y, WANG S Y, HAO X, et al. Plant cross-adaptation and signal transduction induced by salt stress [J]. Plant Physiology Journal, 2022, 58(6): 1045−1054.(in Chinese) doi: 10.13592/j.cnki.ppj.300027
    [2]
    刘云芬, 彭华, 王薇薇, 等. 植物耐盐性生理与分子机制研究进展 [J]. 江苏农业科学, 2019, 47(12):30−36.

    LIU Y F, PENG H, WANG W W, et al. Research progress on physiological and molecular mechanisms of salt tolerance for plants [J]. Jiangsu Agricultural Sciences, 2019, 47(12): 30−36.(in Chinese)
    [3]
    赵亚楠, 王建鑫, 陈蜜蜜, 等. 盐胁迫下对植物生长影响的研究进展[C]//华北五省市(区)环境科学学会第二十二届学术年会论文集. 2021: 18–24.
    [4]
    包珠拉太, 高丽, 王锁民. 植物水通道蛋白及其生理功能 [J]. 植物生理学报, 2017, 53(7):1171−1178.

    BAO Z, GAO L, WANG S M. Physiological functions of plant aquaporin [J]. Plant Physiology Journal, 2017, 53(7): 1171−1178.(in Chinese)
    [5]
    MAUREL C, VERDOUCQ L, RODRIGUES O. Aquaporins and plant transpiration [J]. Plant, Cell & Environment, 2016, 39(11): 2580−2587.
    [6]
    PAWŁOWICZ I, MASAJADA K. Aquaporins as a link between water relations and photosynthetic pathway in abiotic stress tolerance in plants [J]. Gene, 2019, 687: 166−172. doi: 10.1016/j.gene.2018.11.031
    [7]
    ZWIAZEK J J, XU H, TAN X F, et al. Significance of oxygen transport through aquaporins [J]. Scientific Reports, 2017, 7: 40411. doi: 10.1038/srep40411
    [8]
    阮成江, 谢庆良. 盐胁迫下沙棘的渗透调节效应 [J]. 植物资源与环境学报, 2002, 11(2):45−47.

    RUAN C J, XIE Q L. Osmotic adjustment effect of Hippophae rhamnoides L. under salt stress [J]. Journal of Plant Resources and Environment, 2002, 11(2): 45−47.(in Chinese)
    [9]
    李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [10]
    PFAFFL M W. A new mathematical model for relative quantification in real-time RT-PCR [J]. Nucleic Acids Research, 2001, 29(9): e45. doi: 10.1093/nar/29.9.e45
    [11]
    谭照国, 苑少华, 李艳梅, 等. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析 [J]. 作物学报, 2022, 48(9):2242−2254.

    TAN Z G, YUAN S H, LI Y M, et al. Cloning of TaPIP1 gene and its potential function in anther dehiscence in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2242−2254.(in Chinese)
    [12]
    LI R, WANG J F, LI S T, et al. Plasma membrane intrinsic proteins SlPIP2;1, SlPIP2;7 and SlPIP2;5 conferring enhanced drought stress tolerance in tomato [J]. Scientific Reports, 2016, 6: 31814. doi: 10.1038/srep31814
    [13]
    张冰冰, 孙天旭, 赵月明, 等. 羊草LcPIP基因遗传转化露地菊及其抗盐性鉴定 [J]. 植物生理学报, 2018, 54(3):491−499.

    ZHANG B B, SUN T X, ZHAO Y M, et al. Genetic transformation of LcPIP gene in Chrysanthemum morifolium and identification of its salt resistance [J]. Plant Physiology Journal, 2018, 54(3): 491−499.(in Chinese)
    [14]
    余桂红, 孙晓波, 张旭, 等. 转SbPIP1基因小麦植株的获得及发芽期耐盐性鉴定 [J]. 分子植物育种, 2012, 10(4):398−403.

    YU G H, SUN X B, ZHANG X, et al. Obtaining of transgenic wheat plants with SbPIP1 gene and preliminary assay of salt tolerance [J]. Molecular Plant Breeding, 2012, 10(4): 398−403.(in Chinese)
    [15]
    HUANG L Y, LI Z Z, PAN S B, et al. Ameliorating effects of exogenous calcium on the photosynthetic physiology of honeysuckle (Lonicera japonica) under salt stress [J]. Functional Plant Biology, 2019, 46(12): 1103−1113. doi: 10.1071/FP19116
    [16]
    刘晶, 才华, 刘莹, 等. 两种紫花苜蓿苗期耐盐生理特性的初步研究及其耐盐性比较 [J]. 草业学报, 2013, 22(2):250−256.

    LIU J, CAI H, LIU Y, et al. A study on physiological characteristics and comparison of salt tolerance of two Medicago sativa at the seedling stage [J]. Acta Prataculturae Sinica, 2013, 22(2): 250−256.(in Chinese)
    [17]
    冉昆, 孙晓莉, 张勇, 等. 杜梨质膜水孔蛋白基因PbPIP1的克隆与表达分析 [J]. 植物生理学报, 2016, 52(6):868−876.

    RAN K, SUN X L, ZHANG Y, et al. Cloning and expression analysis of a plasma membrane aquaporion gene PbPIP1 in Pyrus betulifoli a [J]. Plant Physiology Journal, 2016, 52(6): 868−876.(in Chinese)
    [18]
    周洪华, 李卫红. 胡杨木质部水分传导对盐胁迫的响应与适应 [J]. 植物生态学报, 2015, 39(1):81−91. doi: 10.17521/cjpe.2015.0009

    ZHOU H H, LI W H. Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratic a [J]. Chinese Journal of Plant Ecology, 2015, 39(1): 81−91.(in Chinese) doi: 10.17521/cjpe.2015.0009
    [19]
    岳川, 曹红利, 王赞, 等. 茶树水通道蛋白基因的克隆与表达分析 [J]. 西北植物学报, 2018, 38(8):1419−1427. doi: 10.7606/j.issn.1000-4025.2018.08.1419

    YUE C, CAO H L, WANG Z, et al. Cloning and expression analysis of aquaporin protein genes in tea plant(Camellia sinensis) [J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(8): 1419−1427.(in Chinese) doi: 10.7606/j.issn.1000-4025.2018.08.1419
    [20]
    颜培玲, 潘学军, 张文娥. 野生毛葡萄水通道蛋白基因VhPIP1的克隆及其在干旱胁迫下的表达分析 [J]. 园艺学报, 2015, 42(2):221−232. doi: 10.16420/j.issn.0513-353x.2014-0875

    YAN P L, PAN X J, ZHANG W E. Cloning of aquaporion gene VhPIP1 in Vitis heyneana and its expression under drought stress [J]. Acta Horticulturae Sinica, 2015, 42(2): 221−232.(in Chinese) doi: 10.16420/j.issn.0513-353x.2014-0875
    [21]
    LI W, FU L F, GENG Z W, et al. Physiological characteristic changes and full-length transcriptome of rose (Rosa chinensis) roots and leaves in response to drought stress [J]. Plant and Cell Physiology, 2021, 61(12): 2153−2166. doi: 10.1093/pcp/pcaa137
    [22]
    KIM Y, CHUNG Y S, LEE E, et al. Root response to drought stress in rice (Oryza sativa L. ) [J]. International Journal of Molecular Sciences, 2020, 21(4): 1513. doi: 10.3390/ijms21041513
    [23]
    GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I. The physiology of plant responses to drought [J]. Science, 2020, 368(6488): 266−269. doi: 10.1126/science.aaz7614
    [24]
    李淑钰, 李传友. 植物根系可塑性发育的研究进展与展望 [J]. 中国基础科学, 2016, 18(2):14−21. doi: 10.3969/j.issn.1009-2412.2016.02.002

    LI S Y, LI C Y. Developmental plasticity of plant roots [J]. China Basic Science, 2016, 18(2): 14−21.(in Chinese) doi: 10.3969/j.issn.1009-2412.2016.02.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (237) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return