Citation: | SHI H, YAN W W, YIN D H, et al. Physiology and Expression of PIP of Hippophae rhamnoides under Salt Stress [J]. Fujian Journal of Agricultural Sciences,2023,38(12):1414−1419 doi: 10.19303/j.issn.1008-0384.2023.12.004 |
[1] |
曲悦, 王姝瑶, 郝鑫, 等. 盐胁迫诱导植物交叉适应及其信号转导 [J]. 植物生理学报, 2022, 58(6):1045−1054. doi: 10.13592/j.cnki.ppj.300027
QU Y, WANG S Y, HAO X, et al. Plant cross-adaptation and signal transduction induced by salt stress [J]. Plant Physiology Journal, 2022, 58(6): 1045−1054.(in Chinese) doi: 10.13592/j.cnki.ppj.300027
|
[2] |
刘云芬, 彭华, 王薇薇, 等. 植物耐盐性生理与分子机制研究进展 [J]. 江苏农业科学, 2019, 47(12):30−36.
LIU Y F, PENG H, WANG W W, et al. Research progress on physiological and molecular mechanisms of salt tolerance for plants [J]. Jiangsu Agricultural Sciences, 2019, 47(12): 30−36.(in Chinese)
|
[3] |
赵亚楠, 王建鑫, 陈蜜蜜, 等. 盐胁迫下对植物生长影响的研究进展[C]//华北五省市(区)环境科学学会第二十二届学术年会论文集. 2021: 18–24.
|
[4] |
包珠拉太, 高丽, 王锁民. 植物水通道蛋白及其生理功能 [J]. 植物生理学报, 2017, 53(7):1171−1178.
BAO Z, GAO L, WANG S M. Physiological functions of plant aquaporin [J]. Plant Physiology Journal, 2017, 53(7): 1171−1178.(in Chinese)
|
[5] |
MAUREL C, VERDOUCQ L, RODRIGUES O. Aquaporins and plant transpiration [J]. Plant, Cell & Environment, 2016, 39(11): 2580−2587.
|
[6] |
PAWŁOWICZ I, MASAJADA K. Aquaporins as a link between water relations and photosynthetic pathway in abiotic stress tolerance in plants [J]. Gene, 2019, 687: 166−172. doi: 10.1016/j.gene.2018.11.031
|
[7] |
ZWIAZEK J J, XU H, TAN X F, et al. Significance of oxygen transport through aquaporins [J]. Scientific Reports, 2017, 7: 40411. doi: 10.1038/srep40411
|
[8] |
阮成江, 谢庆良. 盐胁迫下沙棘的渗透调节效应 [J]. 植物资源与环境学报, 2002, 11(2):45−47.
RUAN C J, XIE Q L. Osmotic adjustment effect of Hippophae rhamnoides L. under salt stress [J]. Journal of Plant Resources and Environment, 2002, 11(2): 45−47.(in Chinese)
|
[9] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
|
[10] |
PFAFFL M W. A new mathematical model for relative quantification in real-time RT-PCR [J]. Nucleic Acids Research, 2001, 29(9): e45. doi: 10.1093/nar/29.9.e45
|
[11] |
谭照国, 苑少华, 李艳梅, 等. 小麦TaPIP1基因克隆及其在花药开裂中潜在功能分析 [J]. 作物学报, 2022, 48(9):2242−2254.
TAN Z G, YUAN S H, LI Y M, et al. Cloning of TaPIP1 gene and its potential function in anther dehiscence in wheat [J]. Acta Agronomica Sinica, 2022, 48(9): 2242−2254.(in Chinese)
|
[12] |
LI R, WANG J F, LI S T, et al. Plasma membrane intrinsic proteins SlPIP2;1, SlPIP2;7 and SlPIP2;5 conferring enhanced drought stress tolerance in tomato [J]. Scientific Reports, 2016, 6: 31814. doi: 10.1038/srep31814
|
[13] |
张冰冰, 孙天旭, 赵月明, 等. 羊草LcPIP基因遗传转化露地菊及其抗盐性鉴定 [J]. 植物生理学报, 2018, 54(3):491−499.
ZHANG B B, SUN T X, ZHAO Y M, et al. Genetic transformation of LcPIP gene in Chrysanthemum morifolium and identification of its salt resistance [J]. Plant Physiology Journal, 2018, 54(3): 491−499.(in Chinese)
|
[14] |
余桂红, 孙晓波, 张旭, 等. 转SbPIP1基因小麦植株的获得及发芽期耐盐性鉴定 [J]. 分子植物育种, 2012, 10(4):398−403.
YU G H, SUN X B, ZHANG X, et al. Obtaining of transgenic wheat plants with SbPIP1 gene and preliminary assay of salt tolerance [J]. Molecular Plant Breeding, 2012, 10(4): 398−403.(in Chinese)
|
[15] |
HUANG L Y, LI Z Z, PAN S B, et al. Ameliorating effects of exogenous calcium on the photosynthetic physiology of honeysuckle (Lonicera japonica) under salt stress [J]. Functional Plant Biology, 2019, 46(12): 1103−1113. doi: 10.1071/FP19116
|
[16] |
刘晶, 才华, 刘莹, 等. 两种紫花苜蓿苗期耐盐生理特性的初步研究及其耐盐性比较 [J]. 草业学报, 2013, 22(2):250−256.
LIU J, CAI H, LIU Y, et al. A study on physiological characteristics and comparison of salt tolerance of two Medicago sativa at the seedling stage [J]. Acta Prataculturae Sinica, 2013, 22(2): 250−256.(in Chinese)
|
[17] |
冉昆, 孙晓莉, 张勇, 等. 杜梨质膜水孔蛋白基因PbPIP1的克隆与表达分析 [J]. 植物生理学报, 2016, 52(6):868−876.
RAN K, SUN X L, ZHANG Y, et al. Cloning and expression analysis of a plasma membrane aquaporion gene PbPIP1 in Pyrus betulifoli a [J]. Plant Physiology Journal, 2016, 52(6): 868−876.(in Chinese)
|
[18] |
周洪华, 李卫红. 胡杨木质部水分传导对盐胁迫的响应与适应 [J]. 植物生态学报, 2015, 39(1):81−91. doi: 10.17521/cjpe.2015.0009
ZHOU H H, LI W H. Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratic a [J]. Chinese Journal of Plant Ecology, 2015, 39(1): 81−91.(in Chinese) doi: 10.17521/cjpe.2015.0009
|
[19] |
岳川, 曹红利, 王赞, 等. 茶树水通道蛋白基因的克隆与表达分析 [J]. 西北植物学报, 2018, 38(8):1419−1427. doi: 10.7606/j.issn.1000-4025.2018.08.1419
YUE C, CAO H L, WANG Z, et al. Cloning and expression analysis of aquaporin protein genes in tea plant(Camellia sinensis) [J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(8): 1419−1427.(in Chinese) doi: 10.7606/j.issn.1000-4025.2018.08.1419
|
[20] |
颜培玲, 潘学军, 张文娥. 野生毛葡萄水通道蛋白基因VhPIP1的克隆及其在干旱胁迫下的表达分析 [J]. 园艺学报, 2015, 42(2):221−232. doi: 10.16420/j.issn.0513-353x.2014-0875
YAN P L, PAN X J, ZHANG W E. Cloning of aquaporion gene VhPIP1 in Vitis heyneana and its expression under drought stress [J]. Acta Horticulturae Sinica, 2015, 42(2): 221−232.(in Chinese) doi: 10.16420/j.issn.0513-353x.2014-0875
|
[21] |
LI W, FU L F, GENG Z W, et al. Physiological characteristic changes and full-length transcriptome of rose (Rosa chinensis) roots and leaves in response to drought stress [J]. Plant and Cell Physiology, 2021, 61(12): 2153−2166. doi: 10.1093/pcp/pcaa137
|
[22] |
KIM Y, CHUNG Y S, LEE E, et al. Root response to drought stress in rice (Oryza sativa L. ) [J]. International Journal of Molecular Sciences, 2020, 21(4): 1513. doi: 10.3390/ijms21041513
|
[23] |
GUPTA A, RICO-MEDINA A, CAÑO-DELGADO A I. The physiology of plant responses to drought [J]. Science, 2020, 368(6488): 266−269. doi: 10.1126/science.aaz7614
|
[24] |
李淑钰, 李传友. 植物根系可塑性发育的研究进展与展望 [J]. 中国基础科学, 2016, 18(2):14−21. doi: 10.3969/j.issn.1009-2412.2016.02.002
LI S Y, LI C Y. Developmental plasticity of plant roots [J]. China Basic Science, 2016, 18(2): 14−21.(in Chinese) doi: 10.3969/j.issn.1009-2412.2016.02.002
|