• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 10
Oct.  2023
Turn off MathJax
Article Contents
LI J, ZHANG Q, ZHANG J X, et al. Effects of Straw-returning on Phosphorus Morphology and Microbial Phosphorus-cycling Genes in Rice Paddy Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(10):1230−1241 doi: 10.19303/j.issn.1008-0384.2023.10.012
Citation: LI J, ZHANG Q, ZHANG J X, et al. Effects of Straw-returning on Phosphorus Morphology and Microbial Phosphorus-cycling Genes in Rice Paddy Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(10):1230−1241 doi: 10.19303/j.issn.1008-0384.2023.10.012

Effects of Straw-returning on Phosphorus Morphology and Microbial Phosphorus-cycling Genes in Rice Paddy Soil

doi: 10.19303/j.issn.1008-0384.2023.10.012
  • Received Date: 2023-04-10
  • Accepted Date: 2023-04-10
  • Rev Recd Date: 2023-05-17
  • Available Online: 2023-10-25
  • Publish Date: 2023-10-28
  •   Objective   Effects of straw-returning on phosphorus morphology and microbial phosphorus-cycling genes in paddy soil at rice tillering and maturing stages were investigated.   Method   In consecutive 7 years on a rice field in southern China under a positioning experiment, spent straws were returned to the acidic soil. The implemented treatments included: (1) chemical fertilizer without straw-returning (CK), (2) chemical fertilizer + 100% straw-returning in same season (CKS), (3) CKS+ straws to replace 10% potassium fertilizer (S10), (4) CKS + straws to replace 20% potassium fertilizer (S20) or (5) CKS + straws to replace 30% potassium fertilizer (S30). At end of the treatments, Guppy soil phosphorus continuous extraction method and metagenomic technology were applied to determine the composition of phosphorus of different forms and microbial phosphorus-cycling genes.   Result   Straw-returning significantly increased the available NaHCO3-Pi in soil (P<0.05)—the S10 and S20 treatments resulted in an increase by 5.88%-8.73% over CK. NaOH-Pi was the main form of phosphorus in the acid paddy soil in southern China with a content ranging from 154.03 mg·kg−1 to 202.11 mg·kg−1. By turning the spent straws into the field, the abundance of phosphorus-cycling genes, especially the inorganic phosphorus dissolution gene pqqC under CKS, was significantly affected. The genes, such as phnW, phnO, pqqB, and pqqC, activated the conversion of hydrochloric acid phosphorus and residual phosphorus into available form; those like appA, phnX, and ppx, participated in the formation of stable phosphorus; and NaOH-Pi played a key role in the long-term transformation of the mineral. And the main factors that governed the abundance of the functional genes appeared to be the organic carbon and pH of the soil.   Conclusion   Through altering the soil physiochemical properties, returning spent straws to the ground significantly enriched the microbial phosphorus-cycling genes that promoted the mineral transformation of the acidic paddy soil in southern China.
  • loading
  • [1]
    TURNER B L, CHEESMAN A W, CONDRON L M, et al. Introduction to the special issue: Developments in soil organic phosphorus cycling in natural and agricultural ecosystems [J]. Geoderma, 2015, 257/258: 1−3. doi: 10.1016/j.geoderma.2015.06.008
    [2]
    GEORGE T S, GILES C D, MENEZES-BLACKBURN D, et al. Organic phosphorus in the terrestrial environment: A perspective on the state of the art and future priorities [J]. Plant and Soil, 2018, 427(1/2): 191−208.
    [3]
    BERGKEMPER F, SCHÖLER A, ENGEL M, et al. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems [J]. Environmental Microbiology, 2016, 18(8): 2767. doi: 10.1111/1462-2920.13442
    [4]
    DAI Z M, LIU G F, CHEN H H, et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems [J]. The ISME Journal, 2020, 14(3): 757−770. doi: 10.1038/s41396-019-0567-9
    [5]
    BOLLE S, GEBREMIKAEL M T, MAERVOET V, et al. Performance of phosphate-solubilizing bacteria in soil under high phosphorus conditions [J]. Biology and Fertility of Soils, 2013, 49(6): 705−714. doi: 10.1007/s00374-012-0759-1
    [6]
    LI J T, LU J L, WANG H Y, et al. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes [J]. Biological Reviews of the Cambridge Philosophical Society, 2021, 96(6): 2771−2793. doi: 10.1111/brv.12779
    [7]
    方凯, 孙丽丽, 周昌敏, 等. 长期秸秆还田对双季稻土壤有机碳组分及碳库管理指数的影响 [J]. 福建农业学报, 2022, 37(9):1216−1224.

    FANG K, SUN L L, ZHOU C M, et al. Effects of long-term spent straw incorporation on organic carbons in soil and carbon pool management at two-crop rice fields [J]. Fujian Journal of Agricultural Sciences, 2022, 37(9): 1216−1224.(in Chinese)
    [8]
    周旦, 王欣, 郭小军, 等. 长期有机培肥对红壤有机碳组分及水稻产量的影响 [J]. 福建农业学报, 2021, 36(8):867−877.

    ZHOU D, WANG X, GUO X J, et al. Effects of long-term organic fertilization on organic carbon and microbial community in red soil and rice yield [J]. Fujian Journal of Agricultural Sciences, 2021, 36(8): 867−877.(in Chinese)
    [9]
    颜双双. 寒地水稻秸秆还田对土壤碳磷组分与微生物影响效应的研究[D]. 哈尔滨: 东北农业大学, 2021.

    YAN S S. Effects of rice straw return on soil organic carbon fractions, phosphorus fractions and microbial community in cold region[D]. Harbin: Northeast Agricultural University, 2021. (in Chinese)
    [10]
    ROBLES-AGUILAR A A, PANG J Y, POSTMA J A, et al. The effect of pH on morphological and physiological root traits of Lupinus angustifolius treated with struvite as a recycled phosphorus source [J]. Plant and Soil, 2019, 434(1/2): 65−78.
    [11]
    YANG O Y, EVANS S E, FRIESEN M L, et al. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies [J]. Soil Biology and Biochemistry, 2018, 127: 71−78. doi: 10.1016/j.soilbio.2018.08.024
    [12]
    RANJAN R, RANI A, METWALLY A, et al. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing [J]. Biochemical and Biophysical Research Communications, 2016, 469(4): 967−977. doi: 10.1016/j.bbrc.2015.12.083
    [13]
    NEAL A L, ROSSMANN M, BREARLEY C, et al. Land-use influences phosphatase gene microdiversity in soils [J]. Environmental Microbiology, 2017, 19(7): 2740−2753. doi: 10.1111/1462-2920.13778
    [14]
    唐治喜, 高菊生, 宋阿琳, 等. 用宏基因组学方法研究绿肥对水稻根际微生物磷循环功能基因的影响 [J]. 植物营养与肥料学报, 2020, 26(9):1578−1590.

    TANG Z X, GAO J S, SONG A L, et al. Impact of green manure on microbial phosphorus cycling genes in rice rhizosphere as investigated by metagenomics [J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(9): 1578−1590.(in Chinese)
    [15]
    LIANG J L, LIU J, JIA P, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining [J]. The ISME Journal, 2020, 14(6): 1600−1613. doi: 10.1038/s41396-020-0632-4
    [16]
    龙方莉. 秸秆还田对稻田土壤磷循环微生物及关键功能基因的影响[D]. 武汉: 华中农业大学, 2022.

    LONG F L. Effects of straw returning on phosphorus cycling microorganisms and key functional genes in paddy soil[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese)
    [17]
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
    [18]
    BROOKES P C, POWLSON D S, JENKINSON D S. Measurement of microbial biomass phosphorus in soil [J]. Soil Biology and Biochemistry, 1982, 14(4): 319−329. doi: 10.1016/0038-0717(82)90001-3
    [19]
    GUPPY C N, MENZIES N W, MOODY P W, et al. Analytical methods and quality assurance [J]. Communications in Soil Science and Plant Analysis, 2000, 31(11/12/13/14): 1981−1991.
    [20]
    VON SPERBER C, STALLFORTH R, DU PREEZ C, et al. Changes in soil phosphorus pools during prolonged arable cropping in semiarid grasslands [J]. European Journal of Soil Science, 2017, 68(4): 462−471. doi: 10.1111/ejss.12433
    [21]
    WANG G W, JIN Z X, WANG X X, et al. Simulated root exudates stimulate the abundance of Saccharimonadales to improve the alkaline phosphatase activity in maize rhizosphere [J]. Applied Soil Ecology, 2022, 170: 104274. doi: 10.1016/j.apsoil.2021.104274
    [22]
    JAVOT H, PUMPLIN N, HARRISON M J. Phosphate in the arbuscular mycorrhizal symbiosis: Transport properties and regulatory roles [J]. Plant, Cell & Environment, 2007, 30(3): 310−322.
    [23]
    GARCIA-SANCHEZ M, BERTRAND I, BARAKAT A, et al. Improved rock phosphate dissolution from organic acids is driven by nitrate assimilation of bacteria isolated from nitrate and CaCO3-rich soil [J]. PLoS One, 2023, 18(3): e0283437. doi: 10.1371/journal.pone.0283437
    [24]
    ILLMER P, SCHINNER F. Solubilization of inorganic calcium phosphates—Solubilization mechanisms [J]. Soil Biology and Biochemistry, 1995, 27(3): 257−263. doi: 10.1016/0038-0717(94)00190-C
    [25]
    樊磊, 叶小梅, 何加骏, 等. 解磷微生物对土壤磷素作用的研究进展 [J]. 江苏农业科学, 2008, 36(5):261−263.

    FAN L, YE X M, HE J J, et al. Research progress on the effect of phosphorus-solubilizing microorganisms on soil phosphorus [J]. Jiangsu Agricultural Sciences, 2008, 36(5): 261−263.(in Chinese)
    [26]
    ZHENG M M, WANG C, LI W X, et al. Soil nutrients drive function and composition of phoC-harboring bacterial community in acidic soils of southern China [J]. Frontiers in Microbiology, 2019, 10: 2654. doi: 10.3389/fmicb.2019.02654
    [27]
    李益. 森林土壤磷循环功能基因变化特征及其影响因素[D]. 西安: 西北大学, 2022.

    LI Y. Variation characteristics and influencing factors of forest soil phosphorus cycle functional genes[D]. Xi 'an: Northwest University, 2022. (in Chinese)
    [28]
    LIU J Y, LI F Y, LIU J J, et al. Grazing promotes soil phosphorus cycling by enhancing soil microbial functional genes for phosphorus transformation in plant rhizosphere in a semi-arid natural grassland [J]. Geoderma, 2023, 430: 116303. doi: 10.1016/j.geoderma.2022.116303
    [29]
    ZHANG N N, SAINJU U M, ZHAO F Z, et al. Mulching decreased the abundance of microbial functional genes in phosphorus cycling under maize [J]. Applied Soil Ecology, 2023, 187: 104833. doi: 10.1016/j.apsoil.2023.104833
    [30]
    HU Y J, XIA Y H, SUN Q, et al. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils [J]. Science of the Total Environment, 2018, 628/629: 53−63. doi: 10.1016/j.scitotenv.2018.01.314
    [31]
    RAGOT S A, KERTESZ M A, MÉSZÁROS É, et al. Soil phoD and phoX alkaline phosphatase gene diversity responds to multiple environmental factors [J]. FEMS Microbiology Ecology, 2017, 93(1): fiw212. doi: 10.1093/femsec/fiw212
    [32]
    WAN W J, HAO X L, XING Y H, et al. Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus mineralization [J]. Land Degradation & Development, 2021, 32(2): 766−776.
    [33]
    ZHENG W, ZHAO Z Y, LV F L, et al. Metagenomic exploration of the interactions between N and P cycling and SOM turnover in an apple orchard with a cover crop fertilized for 9 years [J]. Biology and Fertility of Soils, 2019, 55(4): 365−381. doi: 10.1007/s00374-019-01356-9
    [34]
    YAO Q M, LI Z, SONG Y, et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil [J]. Nature Ecology & Evolution, 2018, 2(3): 499−509.
    [35]
    LI H Y, WANG H, WANG H T, et al. Correction to: The chemodiversity of paddy soil dissolved organic matter correlates with microbial community at continental scales [J]. Microbiome, 2020, 8(1): 169. doi: 10.1186/s40168-020-00945-3
    [36]
    HU M J, LE Y X, SARDANS J, et al. Moderate salinity improves the availability of soil P by regulating P-cycling microbial communities in coastal wetlands [J]. Global Change Biology, 2023, 29(1): 276−288. doi: 10.1111/gcb.16465
    [37]
    MARANGUIT D, GUILLAUME T, KUZYAKOV Y. Land-use change affects phosphorus fractions in highly weathered tropical soils [J]. CATENA, 2017, 149: 385−393. doi: 10.1016/j.catena.2016.10.010
    [38]
    YIN Y N, YANG C, LI M T, et al. Biochar reduces bioavailability of phosphorus during swine manure composting: Roles of phoD-harboring bacterial community [J]. Science of the Total Environment, 2023, 858: 159926. doi: 10.1016/j.scitotenv.2022.159926
    [39]
    LUO G W, LING N, NANNIPIERI P, et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions [J]. Biology and Fertility of Soils, 2017, 53(4): 375−388. doi: 10.1007/s00374-017-1183-3
    [40]
    WEI Z M, ZUO H D, LI J, et al. Insight into the mechanisms of insoluble phosphate transformation driven by the interactions of compound microbes during composting [J]. Environmental Science and Pollution Research, 2021, 28(25): 32844−32855. doi: 10.1007/s11356-021-13113-3
    [41]
    苗淑杰, 周连仁, 乔云发, 等. 长期施肥对黑土有机碳矿化和团聚体碳分布的影响 [J]. 土壤学报, 2009, 46(6):1068−1075. doi: 10.3321/j.issn:0564-3929.2009.06.014

    MIAO S J, ZHOU L R, QIAO Y F, et al. Organic carbon mineralization and carbon contribution in aggregates as affected by long-term fertilization [J]. Acta Pedologica Sinica, 2009, 46(6): 1068−1075.(in Chinese) doi: 10.3321/j.issn:0564-3929.2009.06.014
    [42]
    WRIGHT R B, LOCKABY B G, WALBRIDGE M R. Phosphorus availability in an artificially flooded southeastern floodplain forest soil [J]. Soil Science Society of America Journal, 2001, 65(4): 1293−1302. doi: 10.2136/sssaj2001.6541293x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (402) PDF downloads(93) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return