Citation: | LIAO Y J, YANG L, SHAO P, et al. Improved Identification of Leaf Diseases and Pest Infestations on Rice by Means of Coordinate Attention Mechanism-based Residual Network [J]. Fujian Journal of Agricultural Sciences,2023,38(10):1220−1229 doi: 10.19303/j.issn.1008-0384.2023.10.011 |
[1] |
ZHOU J, LI J X, WANG C S, et al. Crop disease identification and interpretation method based on multimodal deep learning [J]. Computers and Electronics in Agriculture, 2021, 189: 106408. doi: 10.1016/j.compag.2021.106408
|
[2] |
王超, 王春圻, 刘金明. 基于深度学习的玉米叶片病害识别方法研究 [J]. 现代农业研究, 2022, 28(6):102−106.
WANG C, WANG C Q, LIU J M. Identification of maize leaf diseases based on deep learning [J]. Modern Agriculture Research, 2022, 28(6): 102−106.(in Chinese)
|
[3] |
JIANG F, LU Y, CHEN Y, et al. Image recognition of four rice leaf diseases based on deep learning and support vector machine [J]. Computers and Electronics in Agriculture, 2020, 179: 105824. doi: 10.1016/j.compag.2020.105824
|
[4] |
BRAHIMI M, BOUKHALFA K, MOUSSAOUI A. Deep learning for tomato diseases: Classification and symptoms visualization [J]. Applied Artificial Intelligence, 2017, 31(4): 299−315. doi: 10.1080/08839514.2017.1315516
|
[5] |
赵恒谦, 杨屹峰, 刘泽龙, 等. 农作物叶片病害迁移学习分步识别方法 [J]. 测绘通报, 2021(7):34−38.
ZHAO H Q, YANG Y F, LIU Z L, et al. Step-by-step identification method of crop leaf diseases based on transfer learning [J]. Bulletin of Surveying and Mapping, 2021(7): 34−38.(in Chinese)
|
[6] |
KAWASAKI Y, UGA H, KAGIWADA S, et al. Basic study of automated diagnosis of viral plant diseases using convolutional neural networks[M]//Advances in Visual Computing. Cham: Springer International Publishing, 2015: 638-645.
|
[7] |
LU Y Z, YOUNG S. A survey of public datasets for computer vision tasks in precision agriculture [J]. Computers and Electronics in Agriculture, 2020, 178: 105760. doi: 10.1016/j.compag.2020.105760
|
[8] |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA. IEEE, 2021: 13708-13717.
|
[9] |
王志强, 于雪莹, 杨晓婧, 等.基于WGAN和MCA-MobileNet的番茄叶片病害识别[J]. 农业机械学报, 2023, 54(5): 244-252.
WANG Z Q, YU X Y, YANG X J, et al. Tomato Leaf Diseases Recognition Based on WGAN and MCA - MobileNet[J]. 2023, 54(5): 244-251.
|
[10] |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770−778.
|
[11] |
XU B, WANG N Y, CHEN T Q, et al. Empirical evaluation of rectified activations in convolutional network[EB/OL]. 2015: arXiv: 1505.00853.https://arxiv.org/abs/1505.00853
|
[12] |
李键红, 吴亚榕. 基于多任务联合稀疏表示的水稻叶片病害自动识别算法 [J]. 仲恺农业工程学院学报, 2017, 30(2):40−44. doi: 10.3969/j.issn.1674-5663.2017.02.007
LI J H, WU Y R. Automatic recognition algorithm for rice leaf diseases based on multi-task joint sparse representation [J]. Journal of Zhongkai University of Agriculture and Engineering, 2017, 30(2): 40−44.(in Chinese) doi: 10.3969/j.issn.1674-5663.2017.02.007
|
[13] |
JIANG Z C, DONG Z X, JIANG W P, et al. Recognition of rice leaf diseases and wheat leaf diseases based on multi-task deep transfer learning [J]. Computers and Electronics in Agriculture, 2021, 186: 106184. doi: 10.1016/j.compag.2021.106184
|
[14] |
刘立波, 周国民. 基于多层感知神经网络的水稻叶瘟病识别方法 [J]. 农业工程学报, 2009, 25(S2):213−217.
LIU L B, ZHOU G M. Identification method of rice leaf blast using multilayer perception neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(S2): 213−217.(in Chinese)
|
[15] |
MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]//In Advances in neural information processing systems. 2014: 2204-2212.
|
[16] |
XU K, BA J L, KIROS R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning - Volume 37. July 6 - 11, 2015, Lille, France. New York: ACM, 2015: 2048-2057.
|
[17] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 7132-7141.
|
[18] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
|
[19] |
WANG H Y, ZHU Y K, GREEN B, et al. Axial-DeepLab: Stand-alone axial-attention for panoptic segmentation[EB/OL]. 2020: arXiv: 2003.07853. https://arxiv.org/abs/2003.07853
|
[20] |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[J]. IEEE Computer Society, 2016: 6230-6239.
|