Citation: | DENG H Y, QIAN F, ZHOU W M, et al. Growth and Saline-tolerance of Quinoa Seeds and Seedlings under Salt Stress [J]. Fujian Journal of Agricultural Sciences,2023,38(10):1139−1145 doi: 10.19303/j.issn.1008-0384.2023.10.002 |
[1] |
VAN ZELM E, ZHANG Y X, TESTERINK C. Salt tolerance mechanisms of plants [J]. Annual Review of Plant Biology, 2020, 71: 403−433. doi: 10.1146/annurev-arplant-050718-100005
|
[2] |
WAQAS M, CHEN Y N, IQBAL H, et al. Synergistic consequences of salinity and potassium deficiency in quinoa: Linking with stomatal patterning, ionic relations and oxidative metabolism [J]. Plant Physiology and Biochemistry, 2021, 159: 17−27. doi: 10.1016/j.plaphy.2020.11.043
|
[3] |
徐成龙, 董奕岑, 卢家磊, 等. 我国滨海盐碱地土壤改良及资源化利用研究进展 [J]. 世界林业研究, 2020, 33(6):68−73.
XU C L, DONG Y C, LU J L, et al. Research progress of soil improvement and soil resources utilization of coastal saline-alkaline land in China [J]. World Forestry Research, 2020, 33(6): 68−73.(in Chinese)
|
[4] |
LIN M Y, HAN P P, LI Y Y, et al. Quinoa secondary metabolites and their biological activities or functions [J]. Molecules, 2019, 24(13): 2512. doi: 10.3390/molecules24132512
|
[5] |
HUSSAIN M I, FAROOQ M, SYED Q A, et al. Botany, nutritional value, phytochemical composition and biological activities of quinoa [J]. Plants, 2021, 10(11): 2258. doi: 10.3390/plants10112258
|
[6] |
任贵兴, 杨修仕, 么杨. 中国藜麦产业现状 [J]. 作物杂志, 2015(5):1−5.
REN G X, YANG X S, YAO Y. Current situation of quinoa industry in China [J]. Crops, 2015(5): 1−5.(in Chinese)
|
[7] |
JACOBSEN S E, MUJICA A, JENSEN C R. The resistance of quinoa (Chenopodium quinoaWilld. ) to adverse abiotic factors [J]. Food Reviews International, 2003, 19(1/2): 99−109.
|
[8] |
LÓPEZ-MARQUÉS R L, NØRREVANG A F, ACHE P, et al. Prospects for the accelerated improvement of the resilient crop quinoa [J]. Journal of Experimental Botany, 2020, 71(18): 5333−5347. doi: 10.1093/jxb/eraa285
|
[9] |
MA Q, SU C X, DONG C H. Genome-wide transcriptomic and proteomic exploration of molecular regulations in quinoa responses to ethylene and salt stress [J]. Plants, 2021, 10(11): 2281. doi: 10.3390/plants10112281
|
[10] |
王志恒, 徐中伟, 周吴艳, 等. 藜麦种子萌发阶段响应干旱和盐胁迫变化的综合评价 [J]. 中国生态农业学报(中英文), 2020, 28(7):1033−1042.
WANG Z H, XU Z W, ZHOU W Y, et al. Comprehensive evaluation of quinoa seed responses to drought and salt stress during germination [J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 1033−1042.(in Chinese)
|
[11] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
|
[12] |
任永峰, 黄琴, 王志敏, 等. 不同化控剂对藜麦农艺性状及产量的影响 [J]. 中国农业大学学报, 2018, 23(8):8−16.
REN Y F, HUANG Q, WANG Z M, et al. Effects of chemical control on agronomic traits and yield of quinoa [J]. Journal of China Agricultural University, 2018, 23(8): 8−16.(in Chinese)
|
[13] |
解卫海, 刘丹, 孙金利, 等. 脱水和高氧压过程中单叶蔓荆叶片细胞膜透性分析 [J]. 林业科学, 2015, 51(6):44−49.
XIE W H, LIU D, SUN J L, et al. Permeability of cells in leaves of Vitex trifolia var. simplicifolia under stresses of dehydration and high oxygen pressure [J]. Scientia Silvae Sinicae, 2015, 51(6): 44−49.(in Chinese)
|
[14] |
杨璐, 依丽米努尔, 朱苗苗, 等. 植物叶片中硫含量测定方法研究 [J]. 应用化工, 2015, 44(3):575−579.
YANG L, YILIMINUER, ZHU M M, et al. Study on the determination of sulfur content in plant leaves [J]. Applied Chemical Industry, 2015, 44(3): 575−579.(in Chinese)
|
[15] |
付尧, 孙玉军. 植物有机碳测定研究进展 [J]. 世界林业研究, 2013, 26(1):24−30.
FU Y, SUN Y J. A study of the determination of organic carbon of vegetation [J]. World Forestry Research, 2013, 26(1): 24−30.(in Chinese)
|
[16] |
常硕, 张延国, 刘广洋, 等. 杜马斯燃烧定氮法和凯氏定氮法在蔬菜粗蛋白质含量检测中的比较 [J]. 中国蔬菜, 2021(6):68−73.
CHANG S, ZHANG Y G, LIU G Y, et al. Comparative studies on determination of crude protein in common vegetables by Dumas combustion method and Kjeldahl method [J]. China Vegetables, 2021(6): 68−73.(in Chinese)
|
[17] |
KOYRO H W, EISA S S. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd [J]. Plant and Soil, 2008, 302(1/2): 79−90.
|
[18] |
李丽丽, 姜奇彦, 牛风娟, 等. 藜麦耐盐机制研究进展 [J]. 中国农业科技导报, 2016, 18(2):31−40.
LI L L, JIANG Q Y, NIU F J, et al. Research progress on salt tolerance mechanisms in quinoa [J]. Journal of Agricultural Science and Technology, 2016, 18(2): 31−40.(in Chinese)
|
[19] |
陆敏佳, 蒋玉蓉, 陆国权, 等. 利用SSR标记分析藜麦品种的遗传多样性 [J]. 核农学报, 2015, 29(2):260−269. doi: 10.11869/j.issn.100-8551.2015.02.0260
LU M J, JIANG Y R, LU G Q, et al. Genetic diversity of quinoa germplasm assessed by SSR markers [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(2): 260−269.(in Chinese) doi: 10.11869/j.issn.100-8551.2015.02.0260
|
[20] |
刘文瑜, 杨发荣, 黄杰, 等. NaCl胁迫对藜麦幼苗生长和抗氧化酶活性的影响 [J]. 西北植物学报, 2017, 37(9):1797−1804. doi: 10.7606/j.issn.1000-4025.2017.09.1797
LIU W Y, YANG F R, HUANG J, et al. Response of seedling growth and the activities of antioxidant enzymes of Chenopodium quinoato salt stress [J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(9): 1797−1804.(in Chinese) doi: 10.7606/j.issn.1000-4025.2017.09.1797
|
[21] |
ADOLF V I, JACOBSEN S E, SHABALA S. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.) [J]. Environmental and Experimental Botany, 2013, 92: 43−54. doi: 10.1016/j.envexpbot.2012.07.004
|
[22] |
RUFFINO A M C, ROSA M, HILAL M, et al. The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity [J]. Plant and Soil, 2010, 326(1/2): 213−224.
|