• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
ZHANG C, LU J, LI X L, et al. Storage and Stability of Phytolith-occluded Carbon in Three Typical Coniferous Forests at Mt. Funiu [J]. Fujian Journal of Agricultural Sciences,2023,38(9):1124−1132 doi: 10.19303/j.issn.1008-0384.2023.09.015
Citation: ZHANG C, LU J, LI X L, et al. Storage and Stability of Phytolith-occluded Carbon in Three Typical Coniferous Forests at Mt. Funiu [J]. Fujian Journal of Agricultural Sciences,2023,38(9):1124−1132 doi: 10.19303/j.issn.1008-0384.2023.09.015

Storage and Stability of Phytolith-occluded Carbon in Three Typical Coniferous Forests at Mt. Funiu

doi: 10.19303/j.issn.1008-0384.2023.09.015
  • Received Date: 2023-05-16
  • Rev Recd Date: 2023-07-07
  • Available Online: 2023-10-25
  • Publish Date: 2023-09-28
  •   Objective  Sequestration and stability of phytoliths and phytolith-occluded carbon (PhytOC) in plant organs, ground litter, and soil in three typical coniferous forests at Mt. Funiu in Henan province were analyzed to better understand the long-term carbon fixation in the eco-system.   Method   Contents of phytoliths, C in phytoliths, PhytOC, and SiO2 in the plant organs, ground litter, and 0-50 cm soil in Cedrus deodara, Sabina chinensis, and Platycladus orientalis forests at Mt. Funiu were collected according to the mass balance method.  Result  The contents of phytoliths, C in phytoliths, PhytOC, and SiO2 in various organs of the trees and soil of the forests in the area varied significantly. The phytolith contents in the plant organs ranged 1.49-3.27 g·kg−1 for C. deodara, 1.44-2.56 g·kg−1 for S. chinensis , and 1.86-2.90 g·kg−1 for P. orientalis, while the PhytOC at the C. deodara forest, 0.030-0.114 g·kg−1, at the S. chinensis forest, 0.036-0.085 g·kg−1, and at the P. orientalis forest, 0.038-0.083 g·kg−1. The production fluxes estimated by this study indicated that the soil PhytOC storage at the S. chinensis forest was 1.64 t·hm−2, which was higher than 1.17 t·hm−2 at the C. deodara forest and 0.77 t·hm−2 at the P. orientalis forest. The estimated PhytOC turnover time for the S. chinensis forest soil was 1 813.16 a, which was significantly longer than 218.78 a for the C. deodara forest soil or 556.44 a for the P. orientalis forest soil.  Conclusion  Significant variations existed on the phytolith content in the plant organs and the PhtyOC production rate and turnover time of the soil at the 3 forests. By optimizing and/or re-establishing the coniferous S. chinensis forest in the mountain, the biogeochemical carbon sink of the environment could be significantly enriched.
  • loading
  • [1]
    IPCC. Land Use, Land Use Change and Forestry. Special Report, Inter-Governmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2000.
    [2]
    孟赐福, 姜培坤, 徐秋芳, 等. 植物生态系统中的植硅体闭蓄有机碳及其在全球土壤碳汇中的重要作用 [J]. 浙江农林大学学报, 2013, 30(6):921−929. doi: 10.11833/j.issn.2095-0756.2013.06.018

    MENG C F, JIANG P K, XU Q F, et al. PhytOC in plant ecological system and its important roles in the global soil carbon sink [J]. Journal of Zhejiang A & F University, 2013, 30(6): 921−929.(in Chinese) doi: 10.11833/j.issn.2095-0756.2013.06.018
    [3]
    LAW B E, HARMON M E. Forest sector carbon management, measurement and verification, and discussion of policy related to climate change [J]. Carbon Management, 2011, 2(1): 73−84. doi: 10.4155/cmt.10.40
    [4]
    KORNER C. Carbon limitation in trees [J]. Journal of Ecology, 2003, 91(1): 4−17. doi: 10.1046/j.1365-2745.2003.00742.x
    [5]
    DEWAR R C, CANNELL M G R. Carbon sequestration in the trees, products and soils of forest plantations: An analysis using UK examples [J]. Tree Physiology, 1992, 11(1): 49−71. doi: 10.1093/treephys/11.1.49
    [6]
    SONG Z L, WANG H L, STRONG P J, et al. Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: Implications for biogeochemical carbon sequestration [J]. Earth-Science Reviews, 2012, 115(4): 319−331. doi: 10.1016/j.earscirev.2012.09.006
    [7]
    JANSSON C, WULLSCHLEGER S D, KALLURI U C, et al. Phytosequestration: Carbon biosequestration by plants and the prospects of genetic engineering [J]. BioScience, 2010, 60(9): 685−696. doi: 10.1525/bio.2010.60.9.6
    [8]
    SONG Z L, PARR J F, GUO F S. Potential of global cropland phytolith carbon sink from optimization of cropping system and fertilization [J]. PLoS One, 2013, 8(9): e73747. doi: 10.1371/journal.pone.0073747
    [9]
    JONES L H P, MILNE A A. Studies of silica in the oat plant [J]. Plant and Soil, 1963, 18(2): 207−220. doi: 10.1007/BF01347875
    [10]
    PARR J F, SULLIVAN L A. Soil carbon sequestration in phytoliths [J]. Soil Biology and Biochemistry, 2005, 37(1): 117−124. doi: 10.1016/j.soilbio.2004.06.013
    [11]
    加鹏华, 李春雨, 尹海魁, 等. 太行山区不同海拔梯度土壤有机碳库及组分变化特征 [J]. 林业与生态科学, 2021, 36(3):269−276.

    JIA P H, LI C Y, YIN H K, et al. Changes of soil organic carbon pools and their components in different altitudinal gradients in Taihang Mountains [J]. Forestry and Ecological Sciences, 2021, 36(3): 269−276.(in Chinese)
    [12]
    ZUO X X, LU H Y, GU Z Y. Distribution of soil phytolith-occluded carbon in the Chinese Loess Plateau and its implications for silica-carbon cycles [J]. Plant and Soil, 2014, 374(1): 223−232.
    [13]
    ZUO X X, LÜ H Y. Carbon sequestration within millet phytoliths from dry-farming of crops in China [J]. Chinese Science Bulletin, 2011, 56(32): 3451−3456. doi: 10.1007/s11434-011-4674-x
    [14]
    PARR J F, SULLIVAN L A. Phytolith occluded carbon and silica variability in wheat cultivars [J]. Plant and Soil, 2011, 342(1): 165−171.
    [15]
    LI Z M, SONG Z L, JIANG P K. Biogeochemical sequestration of carbon within phytoliths of wetland plants: A case study of Xixi wetland, China [J]. Chinese Science Bulletin, 2013, 58(20): 2480−2487. doi: 10.1007/s11434-013-5785-3
    [16]
    尹帅, 姜培坤, 孟赐福, 等. 绿竹和麻竹地上部植硅体碳封存潜力 [J]. 生态学报, 2017, 37(20):6827−6835.

    YIN S, JIANG P K, MENG C F, et al. Comparison of PhytOC sequestration rates in above-ground apart of Dendrocalamopsis oldhami(Munro) Keng f. and Dendrocalamus latiflorus Munro [J]. Acta Ecologica Sinica, 2017, 37(20): 6827−6835.(in Chinese)
    [17]
    王霞, 胡海波, 程璨, 等. 北亚热带麻栎林土壤植硅体碳储量研究 [J]. 浙江农林大学学报, 2021, 38(1):1−9. doi: 10.11833/j.issn.2095-0756.20200283

    WANG X, HU H B, CHENG C, et al. Soil PhytOC sequestration in Quercus acutissima forest in northern subtropics [J]. Journal of Zhejiang A & F University, 2021, 38(1): 1−9.(in Chinese) doi: 10.11833/j.issn.2095-0756.20200283
    [18]
    LI B L, SONG Z L, WANG H L, et al. Phytolith carbon sequestration in bamboos of different ecotypes: A case study in China [J]. Chinese Science Bulletin, 2014, 59(34): 4816−4822. doi: 10.1007/s11434-014-0474-4
    [19]
    SONG Z L, LIU H Y, LI B L, et al. The production of phytolith-occluded carbon in China’s forests: Implications to biogeochemical carbon sequestration [J]. Global Change Biology, 2013, 19(9): 2907−2915. doi: 10.1111/gcb.12275
    [20]
    FAO U. World reference base for soil resources 2014. International soil classification system for Naming soils and creating legends for soil maps[M]. ROME: World Soil Resources Reports No 106, 2014.
    [21]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [22]
    PARR J F, SULLIVAN L A. Comparison of two methods for the isolation of phytolith occluded carbon from plant material [J]. Plant and Soil, 2014, 374(1): 45−53.
    [23]
    LI Z M, SONG Z L, PARR J F, et al. Occluded C in rice phytoliths: Implications to biogeochemical carbon sequestration [J]. Plant and Soil, 2013, 370(1): 615−623.
    [24]
    WALKLEY A, BLACK I A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method [J]. Soil Science, 1934, 37(1): 29−38. doi: 10.1097/00010694-193401000-00003
    [25]
    SONG Z L, LIU H Y, SI Y, et al. The production of phytoliths inC hina’s grasslands: Implications to the biogeochemical sequestration of atmosphericCO2 [J]. Global Change Biology, 2012, 18(12): 3647−3653. doi: 10.1111/gcb.12017
    [26]
    冯宗炜, 王效科, 吴刚. 中国森林生态系统的生物量和生产力[M]. 北京: 科学出版社, 1999.
    [27]
    WEBB E A, LONGSTAFFE F J. Climatic influences on the oxygen isotopic composition of biogenic silica in prairie grass [J]. Geochimica et Cosmochimica Acta, 2002, 66(11): 1891−1904. doi: 10.1016/S0016-7037(02)00822-0
    [28]
    CORNELIS J T, RANGER J, ISERENTANT A, et al. Tree species impact the terrestrial cycle of silicon through various uptakes [J]. Biogeochemistry, 2010, 97(2): 231−245.
    [29]
    林维雷, 应雨骐, 姜培坤, 等. 浙江南部亚热带森林土壤植硅体碳的研究 [J]. 土壤学报, 2015, 52(6):1365−1373.

    LIN W L, YING Y Q, JIANG P K, et al. Study on phytolith-occluded organic carbon in soil of subtropical forest of southern Zhejiang [J]. Acta Pedologica Sinica, 2015, 52(6): 1365−1373.(in Chinese)
    [30]
    VAN ELSAS J D, TREVORS J T, VAN OVERBEEK L S. Influence of soil properties on the vertical movement of genetically-marked Pseudomonas fluorescens through large soil microcosms [J]. Biology and Fertility of Soils, 1991, 10(4): 249−255. doi: 10.1007/BF00337375
    [31]
    BURKHARDT M, KASTEEL R, VANDERBORGHT J, et al. Field study on colloid transport using fluorescent microspheres [J]. European Journal of Soil Science, 2007, 59(1): 82−93. doi: 10.1111/j.1365-2389.2007.00989.x
    [32]
    FISHKIS O, INGWERSEN J, LAMERS M, et al. Phytolith transport in soil: A field study using fluorescent labelling [J]. Geoderma, 2010, 157(1/2): 27−36.
    [33]
    CLARKE J. The occurrence and significance of biogenic opal in the regolith [J]. Earth-Science Reviews, 2003, 60(3/4): 175−194.
    [34]
    ALEXANDRE A, MEUNIER J D, COLIN F, et al. Plant impact on the biogeochemical cycle of silicon and related weathering processes [J]. Geochimica et Cosmochimica Acta, 1997, 61(3): 677−682. doi: 10.1016/S0016-7037(97)00001-X
    [35]
    FRAYSSE F, POKROVSKY O S, SCHOTT J, et al. Surface properties, solubility and dissolution kinetics of bamboo phytoliths [J]. Geochimica et Cosmochimica Acta, 2006, 70(8): 1939−1951. doi: 10.1016/j.gca.2005.12.025
    [36]
    LI Z M, SONG Z L, CORNELIS J T. Impact of rice cultivar and organ on elemental composition of phytoliths and the release of bio-available silicon [J]. Frontiers in Plant Science, 2014, 5: 529.
    [37]
    SOMMER M, JOCHHEIM H, HÖHN A, et al. Si cycling in a forest biogeosystem–the importance of transient state biogenic Si pools [J]. Biogeosciences, 2013, 10(7): 4991−5007. doi: 10.5194/bg-10-4991-2013
    [38]
    FRAYSSE F, POKROVSKY O S, SCHOTT J, et al. Surface chemistry and reactivity of plant phytoliths in aqueous solutions [J]. Chemical Geology, 2009, 258(3/4): 197−206.
    [39]
    YANG X M, SONG Z L, LIU H Y, et al. Phytolith accumulation in broadleaf and conifer forests of Northern China: Implications for phytolith carbon sequestration [J]. Geoderma, 2018, 312: 36−44. doi: 10.1016/j.geoderma.2017.10.005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (362) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return