Citation: | TANG W B, LIN S S, GUO J Y, et al. Cloning and Expression of LtGH88 in Lasiodiplodia theobromae [J]. Fujian Journal of Agricultural Sciences,2023,38(9):1112−1116 doi: 10.19303/j.issn.1008-0384.2023.09.013 |
[1] |
莫开林, 吴斌, 李江, 等. 樟树资源化学加工利用产业发展现状 [J]. 生物质化学工程, 2021, 55(1):15−22.
MO K L, WU B, LI J, et al. Development status of camphor tree resources chemical processing and utilization industry [J]. Biomass Chemical Engineering, 2021, 55(1): 15−22.(in Chinese)
|
[2] |
杨鼎超, 衷诚明, 郭铧艳, 等. 我国樟树病害分布及防治研究进展 [J]. 生物灾害科学, 2018, 41(3):176−183.
YANG D C, ZHONG C M, GUO H Y, et al. Research progress of distribution and prevention of diseases in Cinnamomum camphora(L. ) presl in China [J]. Biological Disaster Science, 2018, 41(3): 176−183.(in Chinese)
|
[3] |
王明生, 吴小芹, 王焱, 等. 上海市樟树病害种类调查及病害特征 [J]. 中国森林病虫, 2011, 30(2):24−28.
WANG M S, WU X Q, WANG Y, et al. Investigation on the species and characteristics of the diseases in Cinnamomum camphora(L. ) in Shanghai [J]. Forest Pest and Disease, 2011, 30(2): 24−28.(in Chinese)
|
[4] |
张晓阳, 吴松, 王美鑫, 等. 福建省樟树溃疡病病原菌的分离与鉴定 [J]. 森林与环境学报, 2020, 40(3):306−312.
ZHANG X Y, WU S, WANG M X, et al. Isolation and identification of camphor tree canker disease pathogen in Fujian Province [J]. Journal of Forest and Environment, 2020, 40(3): 306−312.(in Chinese)
|
[5] |
翟立峰, 张美鑫, 赵行, 等. 重庆樟树溃疡病病原菌的鉴定及序列分析 [J]. 林业科学研究, 2019, 32(3):18−25.
ZHAI L F, ZHANG M X, ZHAO H, et al. Identification and sequence analysis of canker pathogen of camphor tree in Chongqing [J]. Forest Research, 2019, 32(3): 18−25.(in Chinese)
|
[6] |
郭立中, 邓先琼, 韦石泉. 樟树的一种新病害: 樟树溃疡病病原菌鉴定 [J]. 植物病理学报, 1995, 25(1):28.
GUO L Z, DENG X Q, WEI S Q. Identification on the fungal pathogen of the canker of camphor tree [J]. Acta Phytopathologica Sinica, 1995, 25(1): 28.(in Chinese)
|
[7] |
吴松, 陈全助, 张晓阳, 等. 樟树溃疡病原菌生物学特性及室内毒力测定 [J]. 森林与环境学报, 2021, 41(3):308−317.
WU S, CHEN Q Z, ZHANG X Y, et al. Studies on biological characteristics of a camphor tree canker pathogen (Neofusicoccum parvum) and fungicide laboratory toxicity [J]. Journal of Forest and Environment, 2021, 41(3): 308−317.(in Chinese)
|
[8] |
KUBICEK C P, STARR T L, GLASS N L. Plant cell wall-degrading enzymes and their secretion in plant-pathogenic fungi [J]. Annual Review of Phytopathology, 2014, 52: 427−451. doi: 10.1146/annurev-phyto-102313-045831
|
[9] |
QUOC N B, CHAU N N B. The role of cell wall degrading enzymes in pathogenesis of Magnaporthe oryzae [J]. Current Protein & Peptide Science, 2017, 18(10): 1019−1034.
|
[10] |
高芬, 岳换弟, 秦雪梅, 等. 植物致病镰刀菌细胞壁降解酶的研究进展 [J]. 江苏农业学报, 2018, 34(4):955−960.
GAO F, YUE H D, QIN X M, et al. Research advances on cell wall degrading enzymes produced by pathogenic Fusarium causing plant diseases [J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 955−960.(in Chinese)
|
[11] |
潘凤英, 刘露露, 孙大运, 等. 植物病原菌糖基水解酶基因家族研究进展 [J]. 生物学杂志, 2022, 39(6):94−100.
PAN F Y, LIU L L, SUN D Y, et al. Research progress on glycoside hydrolases gene family of plant pathogen [J]. Journal of Biology, 2022, 39(6): 94−100.(in Chinese)
|
[12] |
HANE J K, PAXMAN J, JONES D A B, et al. “CATAStrophy”, a genome-informed trophic classification of filamentous plant pathogens - how many different types of filamentous plant pathogens are there? [J]. Frontiers in Microbiology, 2019, 10: 3088.
|
[13] |
ZHAO Z T, LIU H Q, WANG C F, et al. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi [J]. BMC Genomics, 2013, 14: 274. doi: 10.1186/1471-2164-14-274
|
[14] |
田呈明, 王笑连, 余璐, 等. 林木与病原菌分子互作机制研究进展 [J]. 南京林业大学学报(自然科学版), 2021, 45(1):1−12.
TIAN C M, WANG X L, YU L, et al. A review on the studies of molecular interaction between forest trees and phytopathogens [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(1): 1−12.(in Chinese)
|
[15] |
BRADLEY E L, ÖKMEN B, DOEHLEMANN G, et al. Secreted glycoside hydrolase proteins as effectors and invasion patterns of plant-associated fungi and oomycetes [J]. Frontiers in Plant Science, 2022, 13: 853106. doi: 10.3389/fpls.2022.853106
|
[16] |
RAFIEI V, VÉLËZ H, TZELEPIS G. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence [J]. International Journal of Molecular Sciences, 2021, 22(17): 9359. doi: 10.3390/ijms22179359
|
[17] |
彭军波, 李兴红, 张玮, 等. 葡萄溃疡病菌外泌蛋白LtGH61A的致病力及基因表达模式 [J]. 中国农业科学, 2019, 52(24):4518−4526.
PENG J B, LI X H, ZHANG W, et al. Pathogenicity and gene expression pattern of the exocrine protein LtGH61A of grape canker fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518−4526.(in Chinese)
|
[18] |
YU C L, LI T, SHI X P, et al. Deletion of endo-β-1, 4-xylanase VmXyl1 impacts the virulence of Valsa mali in apple tree [J]. Frontiers in Plant Science, 2018, 9: 663. doi: 10.3389/fpls.2018.00663
|
[19] |
YANG C, LIU R, PANG J H, et al. Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during Magnaporthe oryzae infection in rice [J]. Nature Communications, 2021, 12: 2178. doi: 10.1038/s41467-021-22456-x
|
[20] |
FIORIN G L, SANCHÉZ-VALLET A, DE TOLEDO THOMAZELLA D P, et al. Suppression of plant immunity by fungal chitinase-like effectors [J]. Current Biology, 2018, 28(18): 3023−3030.e5. doi: 10.1016/j.cub.2018.07.055
|