Citation: | CHEN X C, XU J R, GAO P Y, et al. Identification and Inhibitory Effect on Lasiodiplodia theobromae of Actinomycetes in Camellia sinensis Rhizosphere Soil [J]. Fujian Journal of Agricultural Sciences,2023,38(9):1103−1111 doi: 10.19303/j.issn.1008-0384.2023.09.012 |
[1] |
王飞权. 不同树龄武夷岩茶品质差异形成的机理[D]. 杨凌: 西北农林科技大学, 2020.
WANG F Q. The formation mechanism of the quality difference of Wuyi rock tea made from different tree ages[D]. Yangling: Northwest A & F University, 2020. (in Chinese)
|
[2] |
徐邢燕. 基于代谢组学的武夷肉桂茶不同烘焙程度、等级及地域品质差异研究[D]. 福州: 福建农林大学, 2020
XU X Y. Metabolome analysis reveals quality differences of baking degrees, grades and areas in Wuyi Rougui tea[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020. (in Chinese)
|
[3] |
商虎, 朱陈松, 叶婷婷, 等. 老枞水仙品质特征分析 [J]. 中国农学通报, 2022, 38(10):141−148.
SHANG H, ZHU C S, YE T T, et al. The quality characteristics of Camellia sinensis’Fujian Shuixian’ [J]. Chinese Agricultural Science Bulletin, 2022, 38(10): 141−148.(in Chinese)
|
[4] |
KIM E S. Recent advances of actinomycetes [J]. Biomolecules, 2021, 11(2): 134. doi: 10.3390/biom11020134
|
[5] |
MAST Y, STEGMANN E. Actinomycetes: The antibiotics producers [J]. Antibiotics, 2019, 8(3): 105. doi: 10.3390/antibiotics8030105
|
[6] |
JAGANNATHAN S V, MANEMANN E M, ROWE S E, et al. Marine actinomycetes, new sources of biotechnological products [J]. Marine Drugs, 2021, 19(7): 365. doi: 10.3390/md19070365
|
[7] |
DUTTA J, THAKUR D. Diversity of culturable bacteria endowed with antifungal metabolites biosynthetic characteristics associated with tea rhizosphere soil of Assam, India [J]. BMC Microbiology, 2021, 21(1): 216. doi: 10.1186/s12866-021-02278-z
|
[8] |
DHAR PURKAYASTHA G, MANGAR P, SAHA A, et al. Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea [J]. PLoS One, 2018, 13(2): e0191761. doi: 10.1371/journal.pone.0191761
|
[9] |
WANG Q M, YANG R J, PENG W S, et al. Tea plants with gray blight have altered root exudates that recruit a beneficial rhizosphere microbiome to prime immunity against aboveground pathogen infection [J]. Frontiers in Microbiology, 2021, 12: 774438. doi: 10.3389/fmicb.2021.774438
|
[10] |
WASCHULIN V, BORSETTO C, JAMES R, et al. Biosynthetic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic sequencing [J]. The ISME Journal, 2022, 16(1): 101−111. doi: 10.1038/s41396-021-01052-3
|
[11] |
任亚峰, 包兴涛, 李冬雪, 等. 茶树叶斑病病原菌可可毛色二孢菌的鉴定 [J]. 植物病理学报, 2019, 49(6):857−861.
REN Y F, BAO X T, LI D X, et al. Identification of the pathogen Lasiodiplodia theobromae causing tea leaf spot [J]. Acta Phytopathologica Sinica, 2019, 49(6): 857−861.(in Chinese)
|
[12] |
戴利铭, 刘一贤, 施玉萍, 等. 橡胶树可可毛色二孢叶斑病菌生物学特性及药剂筛选试验 [J]. 广东农业科学, 2018, 45(7):87−93.
DAI L M, LIU Y X, SHI Y P, et al. The biological characteristics of Lasiodiplodia theobromae causing leaf spot on rubber tree and the selection of fungicides in laboratory [J]. Guangdong Agricultural Sciences, 2018, 45(7): 87−93.(in Chinese)
|
[13] |
黄艳花, 宁平, 黄远光, 等. 百香果茎基腐病病原菌鉴定及其生物学特性 [J]. 西南农业学报, 2022, 35(1):105−112.
HUANG Y H, NING P, HUANG Y G, et al. Identification and biological characterization of stem rot pathogens from passion fruit [J]. Southwest China Journal of Agricultural Sciences, 2022, 35(1): 105−112.(in Chinese)
|
[14] |
唐中发, 秦春秀, 缪卫国, 等. 海南菠萝一种叶斑病病原菌的分离与鉴定及多基因序列分析 [J]. 基因组学与应用生物学, 2021, 40(3):1219−1226.
TANG Z F, QIN C X, MIAO W G, et al. Isolation, identification and analysis of multiple gene sequences of a pathogen of leaf spot disease on pineapple in Hainan [J]. Genomics and Applied Biology, 2021, 40(3): 1219−1226.(in Chinese)
|
[15] |
卜旭莹, 任敏, 万传星, 等. 帕米尔高原可培养需氧冷适应细菌及古菌多样性 [J]. 微生物学报, 2022, 62(7):2568−2581.
BU X Y, REN M, WAN C X, et al. Diversity of aerobic cold-adapted bacteria and Archaea isolated from the Pamir Plateau [J]. Acta Microbiologica Sinica, 2022, 62(7): 2568−2581.(in Chinese)
|
[16] |
CHEN J W, CHEN J, WANG S Q, et al. Amycolachromones A-F, isolated from a streptomycin-resistant strain of the deep-sea marine actinomycete Amycolatopsis sp. WP1 [J]. Marine Drugs, 2022, 20(3): 162. doi: 10.3390/md20030162
|
[17] |
马瑞, 张发, 王传琪, 等. 云南荷花温泉放线菌物种多样性及其生物活性 [J]. 大理大学学报, 2019, 4(12):69−74.
MA R, ZHANG F, WANG C Q, et al. Species diversity and biological activity of Actinobacteria in Hehua hot spring of Yunnan Province [J]. Journal of Dali University, 2019, 4(12): 69−74.(in Chinese)
|
[18] |
关统伟, 向慧平, 冯栩, 等. 硝尔库勒湖可培养放线菌多样性及其功能酶和抗细菌活性 [J]. 微生物学报, 2018, 58(10):1864−1874.
GUAN T W, XIANG H P, FENG X, et al. Diversity and antibacterial activity of culturable Actinobacteria from xiaoerkule lake [J]. Acta Microbiologica Sinica, 2018, 58(10): 1864−1874.(in Chinese)
|
[19] |
王梦雨, 黄美娟, 李茜, 等. 云南金铁锁根可培养放线菌多样性及其抗菌活性研究 [J]. 微生物学报, 2022, 62(5):1905−1918.
WANG M Y, HUANG M J, LI Q, et al. Diversity and antimicrobial activities of culturable endophytic actinomyces in the roots of Psammosilene tunicoides in Yunnan Province [J]. Acta Microbiologica Sinica, 2022, 62(5): 1905−1918.(in Chinese)
|
[20] |
吴佳, 李晓霞, 舒伟学, 等. 缬草内生菌和根际放线菌的分离及安莎类抗生素的筛选 [J]. 西北农林科技大学学报(自然科学版), 2019, 47(6):107−114.
WU J, LI X X, SHU W X, et al. Isolation of endophytic and rhizospheric actinomycetes of Valerian and screening of ansamycins antibiotics [J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(6): 107−114.(in Chinese)
|
[21] |
杜用玺. 丹参根际放线菌的防病促生功能研究[D]. 广州: 广东药科大学, 2021.
DU Y X. Study on the function of disease prevention and growth-promotion of rhizosphere actinomycetes from Salvia miltiorrhiza bge. [D]. Guangzhou: Guangdong Pharmaceutical University, 2021. (in Chinese)
|
[22] |
査艳景, 姜国银, 张炳炎, 等. 枸骨根际放线菌ZY-2的分离鉴定及其抑菌活性检测研究 [J]. 昆明学院学报, 2022, 44(3):105−110.
ZHA Y J, JIANG G Y, ZHANG B Y, et al. Isolation, identification and bacteriostatic activity of actinomycete ZY-2 from the rhizosphere soil of Ilex cornuta L [J]. Journal of Kunming University, 2022, 44(3): 105−110.(in Chinese)
|
[23] |
WANG Z R, ZHONG T, CHEN K W, et al. Antifungal activity of volatile organic compounds produced by Pseudomonas fluorescens ZX and potential biocontrol of blue mold decay on postharvest citrus [J]. Food Control, 2021, 120: 107499. doi: 10.1016/j.foodcont.2020.107499
|
[24] |
ZHOU D B, JING T, CHEN Y F, et al. Biocontrol potential of a newly isolated Streptomyces sp. HSL-9B from mangrove forest on postharvest anthracnose of mango fruit caused by Colletotrichum gloeosporioides [J]. Food Control, 2022, 135: 108836. doi: 10.1016/j.foodcont.2022.108836
|
[25] |
刘双龙, 杨德洁, 牛晓庆, 等. 可可毛色二孢拮抗菌的鉴定及发酵条件优化 [J]. 南方农业学报, 2022, 53(8):2186−2195.
LIU S L, YANG D J, NIU X Q, et al. Identification and fermentation condition optimization of antagonistic bacteria against Lasiodiplodia theobromae [J]. Journal of Southern Agriculture, 2022, 53(8): 2186−2195.(in Chinese)
|
[26] |
LI M Y, WANG J L, YAO T, et al. Bacterial diversity and community structure in the rhizosphere of four halophytes [J]. Current Microbiology, 2021, 78(7): 2720−2732. doi: 10.1007/s00284-021-02536-3
|
[27] |
范中菡. 四川阿坝红花绿绒蒿内生及根际放线菌多样性[D]. 雅安: 四川农业大学, 2016
FAN Z H. Diversity of endophytic Actinobacteria and rhizosphere soil Actinobacteria from Meconopsis punicea sampled in Aba, Sichuan[D]. Yaan: Sichuan Agricultural University, 2016. (in Chinese)
|
[28] |
BERHONGARAY G, JANSSENS I A, KING J S, et al. Fine root biomass and turnover of two fast-growing poplar genotypes in a short-rotation coppice culture [J]. Plant and Soil, 2013, 373(1): 269−283.
|
[29] |
EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911−E920.
|
[30] |
BECKERS B, OP DE BEECK M, WEYENS N, et al. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees [J]. Microbiome, 2017, 5(1): 25. doi: 10.1186/s40168-017-0241-2
|
[31] |
SAMMUT D, ELLIOT C A, KIELY D G, et al. Central venous catheter-related blood stream infections in patients receiving intravenous iloprost for pulmonary hypertension [J]. European Journal of Clinical Microbiology & Infectious Diseases, 2013, 32(7): 883−889.
|
[32] |
KIM M, OH H S, PARK S C, et al. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt 2): 346-351.
|
[33] |
XIE C L, NIU S W, ZHOU T T, et al. Chemical constituents and chemotaxonomic study on the marine actinomycete Williamsia sp. MCCC 1A11233 [J]. Biochemical Systematics and Ecology, 2016, 67: 129−133. doi: 10.1016/j.bse.2016.06.004
|
[34] |
刘一贤, 施玉萍, 戴利铭, 等. 橡胶褐根病拮抗放线菌17-7的筛选、鉴定及发酵条件优化 [J]. 微生物学通报, 2020, 47(1):118−129. doi: 10.13344/j.microbiol.china.190160
LIU Y X, SHI Y P, DAI L M, et al. Screening, identification and fermentation optimization of an antimicrobial actinomycete strain 17-7 to Phellinus noxius [J]. Microbiology China, 2020, 47(1): 118−129.(in Chinese) doi: 10.13344/j.microbiol.china.190160
|
[35] |
高雪, 辜运富, 尼玛扎西, 等. 西藏青稞根际土壤可培养放线菌的遗传多样性及其促生功能分析[J]. 四川农业大学学报, 2019, 37(6): 777-784.
GAO X, GU Y F, NYIMA T S, et al. Analysis of the genetic diversity and promoting functions of the culturable actinomycetes in the rhizosphere of highland barley in Tibet[J]. Journal of Sichuan Agricultural University,
|
[36] |
郑洁, 庹利, 李伟, 等. 山西太子滩温泉土壤放线菌多样性及功能基因筛选的研究 [J]. 中国酿造, 2019, 38(9):49−53.
ZHENG J, TUO L, LI W, et al. Diversity and screening of functional gene of actinomycetes isolated from soil in hot spring of Shanxi Prince Beach [J]. China Brewing, 2019, 38(9): 49−53.(in Chinese)
|
[37] |
PARK Y, KOOK M, NGO H T T, et al. Arthrobacter bambusae sp. nov., isolated from soil of a bamboo grove [J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt_9): 3069−3074. doi: 10.1099/ijs.0.064550-0
|
[38] |
PARIHAR K, GEHLOT P, MATHUR M, et al. Species composition and diversity dynamics of actinomycetes in arid and semi-arid salt basins of Rajasthan [J]. Current Microbiology, 2022, 79(6): 168. doi: 10.1007/s00284-022-02851-3
|
[39] |
MA A A, ZHANG X F, JIANG K, et al. Phylogenetic and physiological diversity of cultivable actinomycetes isolated from alpine habitats on the qinghai-tibetan plateau [J]. Frontiers in Microbiology, 2020, 11: 555351. doi: 10.3389/fmicb.2020.555351
|
[40] |
GOSWAMI G, DEKA P, DAS P, et al. Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam [J]. 3 Biotech, 2017, 7(3): 229. doi: 10.1007/s13205-017-0864-9
|
[41] |
漆思思. 产抗菌物质海洋放线菌的筛选及其次级代谢产物和活性的研究[D]. 南昌: 南昌大学, 2020
QI S S. Screening of marine actinomycetes producing antimicrobial substances and study on their secondary metabolites and activities[D]. Nanchang: Nanchang University, 2020. (in Chinese)
|
[42] |
吴巧灵, 孙长利, 周镇槟, 等. 石磺来源海洋链霉菌Streptomyces ardesiacus scsio LO23中germicidin类化合物的分离鉴定及其生物合成分析 [J]. 微生物学报, 2022, 62(7):2594−2609.
WU Q L, SUN C L, ZHOU Z B, et al. Isolation of germicidins and analysis of their biosynthetic pathways in Streptomyces ardesiacus SCSIO LO23, a marine-derived actinomycete from Onchidium sp. [J]. Acta Microbiologica Sinica, 2022, 62(7): 2594−2609.(in Chinese)
|
[43] |
朱展鹏. 马铃薯疮痂病病原菌多样性分析及抗病种质筛选[D]. 武汉: 华中农业大学, 2020
ZHU Z P. Diversity analysis of potato common scab pathogens and disease-resistant germplasm screening[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese)
|
[44] |
TOMIHAMA T, NISHI Y, SAKAI M S, et al. Draft genome sequences of Streptomyces scabiei S58, Streptomyces turgidiscabies T45, and Streptomyces acidiscabies a10, the pathogens of potato common scab, isolated in Japan [J]. Genome Announcements, 2016, 4(2): e00062−e00016.
|
[45] |
TAO X Y, ZHAO M, ZHANG Y, et al. Comparison of the expression of phospholipase D from Streptomyces halstedii in different hosts and its over-expression in Streptomyces lividans [J]. FEMS Microbiology Letters, 2019, 366(5): fnz051.
|
[46] |
LIU Y H, HUANG L, FU Y, et al. A novel process for phosphatidylserine production using a Pichia pastoris whole-cell biocatalyst with overexpression of phospholipase D from Streptomyces halstedii in a purely aqueous system [J]. Food Chemistry, 2019, 274: 535−542. doi: 10.1016/j.foodchem.2018.08.105
|
[47] |
CHO E, KWON O S, CHUNG B, et al. Antibacterial activity of chromomycins from a marine-derived Streptomyces microflavus [J]. Marine Drugs, 2020, 18(10): 522. doi: 10.3390/md18100522
|
[48] |
李堆淑, 冀玉良. 细黄链霉菌与氮磷钾肥配施对桔梗幼苗的影响 [J]. 广西林业科学, 2018, 47(2):155−158.
LI D S, JI Y L. Effect of the Streptomyces microflavus and NPK fertilizer on Platycodon grandiflorus seedlings [J]. Guangxi Forestry Science, 2018, 47(2): 155−158.(in Chinese)
|
[49] |
SUDHA A, DURGADEVI D, ARCHANA S, et al. Unraveling the tripartite interaction of volatile compounds of Streptomyces rochei with grain mold pathogens infecting sorghum [J]. Frontiers in Microbiology, 2022, 13: 923360. doi: 10.3389/fmicb.2022.923360
|