• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
LIU X Y, XIAO D L, MA L, et al. Transcriptome Analysis on Effect of Glutamic and Aspartic Acids on Growth of Sparassis latifolia [J]. Fujian Journal of Agricultural Sciences,2023,38(7):833−841 doi: 10.19303/j.issn.1008-0384.2023.07.009
Citation: LIU X Y, XIAO D L, MA L, et al. Transcriptome Analysis on Effect of Glutamic and Aspartic Acids on Growth of Sparassis latifolia [J]. Fujian Journal of Agricultural Sciences,2023,38(7):833−841 doi: 10.19303/j.issn.1008-0384.2023.07.009

Transcriptome Analysis on Effect of Glutamic and Aspartic Acids on Growth of Sparassis latifolia

doi: 10.19303/j.issn.1008-0384.2023.07.009
  • Received Date: 2023-04-23
  • Rev Recd Date: 2023-05-11
  • Available Online: 2023-07-06
  • Publish Date: 2023-07-28
  •   Objective   Effects of differential expression genes (DEGs) of Sparassis latifolia cultured with varied nitrogen sources on substrate degradation were analyzed for efficient cultivation of the mushroom.   Method   Cultured on substrates of varied nitrogen sources, such as ammonium sulfate (As), fish peptone (Pep), aspartic acid (Asp), and glutamic acid (Glu), S. latifolia mycelium growth was observed. Transcriptomes of DEGs were determined.   Result   Of the various nitrogen sources, Asp and Glu significantly promoted the mycelial growth (P<0.01). According to a GO enrichment analysis, the DEGs in the mushrooms were mainly related to the activities of oxidoreductase, iron ion transmembrane transport, and iron assimilation by reduction and transport. And the KEGG showed their involvement in the metabolisms of tryptophan, arachidonic acid, and nitrogen. The expressions of the ostreolysin A6, GroES-like protein, and 6-methylsalicylic acid decarboxylase genes were significantly altered by the presence of Asp and Glu (P<0.01).   Conclusion   The use of Asp and Glu as a nitrogen source promoted the substrate utilization through the heightened oxidoreductase activity and iron metabolism in S. latifolia. Hence, the addition would facilitate an efficient mushroom cultivation.
  • loading
  • [1]
    KIMURA T. Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa [J]. BioMed Research International, 2013, 2013: 982317.
    [2]
    SHARMA N, TAPWAL A, VERMA R, et al. Medicinal, nutritional, and nutraceutical potential of Sparassis crispa s. lat. : A review [J]. IMA Fungus, 2022, 13(1): 8. doi: 10.1186/s43008-022-00095-1
    [3]
    WEI X, CHENG F E, LIU J Y, et al. Sparassis latifolia polysaccharides inhibit colon cancer in mice by modulating gut microbiota and metabolism [J]. International Journal of Biological Macromolecules, 2023, 232: 123299. doi: 10.1016/j.ijbiomac.2023.123299
    [4]
    肖冬来, 马璐, 杨驰, 等. 不同碳源条件下广叶绣球菌转录组分析 [J]. 微生物学通报, 2019, 46(7):1654−1661.

    XIAO D L, MA L, YANG C, et al. Transcriptome analysis of Sparassis latifolia cultivated with different carbon sources [J]. Microbiology China, 2019, 46(7): 1654−1661.(in Chinese)
    [5]
    马璐, 杨驰, 肖冬来, 等. 基质碳氮比对广叶绣球菌生长发育的影响 [J]. 菌物学报, 2021, 40(12):3196−3213.

    MA L, YANG C, XIAO D L, et al. Effects of different substrate carbon to nitrogen ratio(C/N) on the growth and development of Sparassis latifolia [J]. Mycosystema, 2021, 40(12): 3196−3213.(in Chinese)
    [6]
    安琪, 吴雪君, 吴冰, 等. 不同碳源和氮源对金针菇降解木质纤维素酶活性的影响 [J]. 菌物学报, 2015, 34(4):761−771.

    AN Q, WU X J, WU B, et al. Effects of carbon and nitrogen sources on lignocellulose decomposition enzyme activities in Flammulina velutipes [J]. Mycosystema, 2015, 34(4): 761−771.(in Chinese)
    [7]
    刘秀明, 陈强, 邬向丽, 等. 国内外食用菌增产添加物研究进展 [J]. 食用菌学报, 2018, 25(1):120−125.

    LIU X M, CHEN Q, WU X L, et al. Usage of mineral and amino acid additives in edible mushroom cultivation [J]. Acta Edulis Fungi, 2018, 25(1): 120−125.(in Chinese)
    [8]
    NAIM L, ALSANAD M A, SHABAN N, et al. Production and composition of Pleurotus ostreatus cultivated on Lithovit(®)-Amino25 supplemented spent substrate [J]. AMB Express, 2020, 10(1): 188. doi: 10.1186/s13568-020-01124-1
    [9]
    CARRASCO J, ZIED D C, PARDO J E, et al. Supplementation in mushroom crops and its impact on yield and quality [J]. AMB Express, 2018, 8(1): 146. doi: 10.1186/s13568-018-0678-0
    [10]
    DHAWAN S, KUHAD R C. Effect of amino acids and vitamins on laccase production by the bird’s nest fungus Cyathus bulleri [J]. Bioresource Technology, 2002, 84(1): 35−38. doi: 10.1016/S0960-8524(02)00026-3
    [11]
    BEG Q K, BHUSHAN B, KAPOOR M, et al. Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3 [J]. Journal of Industrial Microbiology and Biotechnology, 2000, 24(6): 396−402. doi: 10.1038/sj.jim.7000010
    [12]
    MIAO J X, WANG M M, MA L, et al. Effects of amino acids on the lignocellulose degradation by Aspergillus fumigatus Z5: Insights into performance, transcriptional, and proteomic profiles [J]. Biotechnology for Biofuels, 2019, 12: 4. doi: 10.1186/s13068-018-1350-2
    [13]
    林衍铨, 马璐, 应正河, 等. 碳源和氮源对绣球菌菌丝生长的影响 [J]. 食用菌学报, 2011, 18(3):22−26.

    LIN Y Q, MA L, YING Z H, et al. Effect of carbon and nitrogen source on the growth of Sparassis crispa Mycelium [J]. Acta Edulis Fungi, 2011, 18(3): 22−26.(in Chinese)
    [14]
    PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads [J]. Nature Biotechnology, 2015, 33(3): 290−295. doi: 10.1038/nbt.3122
    [15]
    YANG C, MA L, XIAO D L, et al. Chromosome-scale assembly of the Sparassis latifolia genome obtained using long-read and Hi-C sequencing [J]. G3, 2021, 11(8): jkab173. doi: 10.1093/g3journal/jkab173
    [16]
    ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data [J]. Bioinformatics, 2010, 26(1): 139−140. doi: 10.1093/bioinformatics/btp616
    [17]
    XIE C, MAO X Z, HUANG J J, et al. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases [J]. Nucleic Acids Research, 2011, 39(S2): W316−W322. doi: 10.1093/nar/gkr483
    [18]
    CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [19]
    ZHANG H, YOHE T, HUANG L, et al. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation [J]. Nucleic Acids Research, 2018, 46(W1): W95−W101. doi: 10.1093/nar/gky418
    [20]
    杨焕玲, 查磊, 赵旭, 等. 培养基中添加海藻糖对大球盖菇、斑玉蕈菌丝生长的影响 [J]. 微生物学通报, 2019, 46(5):1108−1114.

    YANG H L, ZHA L, ZHAO X, et al. Effect of adding trehalose to culture medium on the growth of Stropharia rugosoannulata and Hypsizigus marmoreus [J]. Microbiology China, 2019, 46(5): 1108−1114.(in Chinese)
    [21]
    韩美玲, 边禄森, 姜宏浩, 等. 不同碳氮源对糙皮侧耳木质纤维素酶活性的影响 [J]. 菌物学报, 2020, 39(8):1538−1550.

    HAN M L, BIAN L S, JIANG H H, et al. Effects of different carbon and nitrogen sources on lignocellulolytic enzyme activities of Pleurotus ostreatus [J]. Mycosystema, 2020, 39(8): 1538−1550.(in Chinese)
    [22]
    SHENG Y Q, ZHANG Y, MA H Z, et al. Enhancing prehydrolysates fermentability by adding nucleophilic amino acids and proteins in biomass pretreatment [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(21): 7892−7900.
    [23]
    VRSANSKA M, VOBERKOVA S, LANGER V, et al. Induction of laccase, lignin peroxidase and manganese peroxidase activities in white-rot fungi using copper complexes [J]. Molecules, 2016, 21(11): 1553. doi: 10.3390/molecules21111553
    [24]
    张津京, 陈明杰, 冯志勇, 等. 芳香族化合物对斑玉蕈菌丝生物量、漆酶活性及其转录水平的影响 [J]. 菌物学报, 2016, 35(9):1130−1138.

    ZHANG J J, CHEN M J, FENG Z Y, et al. Effects of aromatic compounds on biomass, laccase activities and transcript levels of Hypsizygus marmoreus [J]. Mycosystema, 2016, 35(9): 1130−1138.(in Chinese)
    [25]
    张津京, 汪虹, 陈明杰, 等. 曲酸对斑玉蕈子实体形成过程中木质纤维素酶的影响研究 [J]. 菌物学报, 2018, 37(12):1680−1687.

    ZHANG J J, WANG H, CHEN M J, et al. Effects of kojic acid on lignocellulase at fruiting body formation process of Hypsizygus marmoreus [J]. Mycosystema, 2018, 37(12): 1680−1687.(in Chinese)
    [26]
    王言, 余昌霞, 曹晖, 等. 三种有机酸对刺芹侧耳和金针菇菌丝生长的影响 [J]. 食用菌学报, 2015, 22(3):38−42.

    WANG Y, YU C X, CAO H, et al. Effect of oxalic, citric and tartaric acids on Pleurotus eryngii and Flammulina velutipes mycelial biomass production and DNA content [J]. Acta Edulis Fungi, 2015, 22(3): 38−42.(in Chinese)
    [27]
    CRISTICA M, CIORNEA E, MANOLIU A. Influence of some aminoacids on the activity of cellulolytic and xylanolytic enzymes in the fungus Trichoderma reesei qm-9414 [J]. Agronomy Series of Scientific Research/Lucrari Stiintifice Seria Agronomie, 2012, 55(2): 317−320.
    [28]
    DESWAL D, KHASA Y P, KUHAD R C. Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation [J]. Bioresource Technology, 2011, 102(10): 6065−6072. doi: 10.1016/j.biortech.2011.03.032
    [29]
    VYAS A, VYAS D, VYAS K. Production and optimization of cellulases on pretreated groundnut shell by Aspergillus terreus AV49 [J]. Journal of Scientific and Industrial Research, 2005, 64(4): 281−286.
    [30]
    MALLERMAN J, PAPINUTTI L, LEVIN L. Characterization of β-glucosidase produced by the white rot fungus Flammulina velutipes [J]. Journal of Microbiology and Biotechnology, 2015, 25(1): 57−65. doi: 10.4014/jmb.1401.01045
    [31]
    ARANTES V, MILAGRES A M F, FILLEY T R, et al. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: The relevance of nonenzymatic Fenton-based reactions [J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(4): 541−555.
    [32]
    SHAH F, MALI T, LUNDELL T K. Polyporales brown rot species Fomitopsis pinicola: Enzyme activity profiles, oxalic acid production, and Fe(3+)-reducing metabolite secretion [J]. Applied and Environmental Microbiology, 2018, 84(8): e02662−17.
    [33]
    BERNE S, POHLEVEN J, VIDIC I, et al. Ostreolysin enhances fruiting initiation in the oyster mushroom (Pleurotus ostreatus) [J]. Mycological Research, 2007, 111(12): 1431−1436. doi: 10.1016/j.mycres.2007.09.005
    [34]
    VIDIC I, BERNE S, DROBNE D, et al. Temporal and spatial expression of ostreolysin during development of the oyster mushroom (Pleurotus ostreatus) [J]. Mycological Research, 2005, 109(3): 377−382. doi: 10.1017/S0953756204002187
    [35]
    BARH A, SHARMA K, BHATT P, et al. Identification of key regulatory pathways of basidiocarp formation in Pleurotus spp. using modeling, simulation and system biology studies [J]. Journal of Fungi, 2022, 8(10): 1073. doi: 10.3390/jof8101073
    [36]
    肖冬来, 马璐, 应正河, 等. 广叶绣球菌溶血素基因的序列分析及表达动态 [J]. 食用菌学报, 2016, 23(4):7−13.

    XIAO D L, MA L, YING Z H, et al. Sequence characterization and differential expression of a hemolysin gene and the encoded protein from Sparassis latifolia [J]. Acta Edulis Fungi, 2016, 23(4): 7−13.(in Chinese)
    [37]
    HAYER-HARTL M, BRACHER A, HARTL F U. The GroEL-GroES chaperonin machine: A nano-cage for protein folding [J]. Trends in Biochemical Sciences, 2016, 41(1): 62−76. doi: 10.1016/j.tibs.2015.07.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (364) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return