• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
HUANG L J, WEI M, GOU B D, et al. Bioinformatics and Expression of CaTPS9 in Chili Peppers [J]. Fujian Journal of Agricultural Sciences,2023,38(7):800−808 doi: 10.19303/j.issn.1008-0384.2023.07.005
Citation: HUANG L J, WEI M, GOU B D, et al. Bioinformatics and Expression of CaTPS9 in Chili Peppers [J]. Fujian Journal of Agricultural Sciences,2023,38(7):800−808 doi: 10.19303/j.issn.1008-0384.2023.07.005

Bioinformatics and Expression of CaTPS9 in Chili Peppers

doi: 10.19303/j.issn.1008-0384.2023.07.005
  • Received Date: 2022-12-20
  • Rev Recd Date: 2023-04-10
  • Available Online: 2023-08-16
  • Publish Date: 2023-07-28
  •   Objective   Bioinformatics and expression of trehalose-6-phosphate synthase (TPS) gene in chili peppers,CaTPS9, were studied to understand its role in response to abiotic stress during the plant growth.   Method  CaTPS9 was cloned from Qiangfeng 101 to analyze the physicochemical properties, protein structure, cis-regulatory element, and phylogenetic tree. Expressions of the gene in the pericarp and placenta of a commercial pepper as well as the young pericarp, ripened pericarp, young placenta, ripened placenta, leaves, roots, stems, and flowers of chili pepper plants under varied stresses including low temperature, 3-indoleacetic acid(IAA), abscisic acid(ABA), salicylic acid(SA), gibberellin A3(GA3), and methyl jasmonate(MeJA) were determined using qRT PCR.  Result  The full-length cDNA sequence of CaTPS9 was 2604 bp encoded 867 amino acids. Located in the cytoplasm, the protein contained two conserved domains, Glyco_transf_20 and Trehalose_PPase, with a molecular weight of 97.60 kDa, an instability index of 44.27, and a theoretical isoelectric point of 5.63. It was a hydrophilic protein free of transmembrane structure and signal peptide sequence with a structure consisting mainly of alpha helixes and random coils. Phylogenetically, CaTPS9 was close to the homologous genes in Nicotiana tabacum, Solanum lycopersicum and Solanum tuberosum. It had hormones response, stress response, and plant growth and development cis−elements and was expressed most highly in the leaves, lowly in the placentas of a commercially available pepper, and significantly by 12 h SA induction. Stress, such as low temperature, IAA, ABA, GA3, and MeJA, significantly inhibited the expression.  Conclusion   It appeared that CaTPS9 might regulate the response of chili pepper plants to various abiotic stresses through the trehalose biosynthetic pathway.
  • loading
  • [1]
    王立浩, 马艳青, 张宝玺. 我国辣椒品种市场需求与育种趋势 [J]. 中国蔬菜, 2019(8):1−4. doi: 10.19928/j.cnki.1000-6346.2019.08.001

    WANG L H, MA Y Q, ZHANG B X. Market demand and breeding trend of pepper varieties in China [J]. China Vegetables, 2019(8): 1−4.(in Chinese) doi: 10.19928/j.cnki.1000-6346.2019.08.001
    [2]
    ZHU F M, LI M Y, SUN M L, et al. Plant hormone signals regulate trehalose accumulation against osmotic stress in watermelon cells [J]. Protoplasma, 2022, 259(5): 1351−1369. doi: 10.1007/s00709-021-01715-0
    [3]
    GARG A K, KIM J K, OWENS T G, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(25): 15898−15903.
    [4]
    SINGER M A, LINDQUIST S. Multiple effects of trehalose on protein folding in vitro and in vivo [J]. Molecular Cell, 1998, 1(5): 639−648. doi: 10.1016/S1097-2765(00)80064-7
    [5]
    CHOWDARY T K, RAMAN B, RAMAKRISHNA T, et al. Interaction of mammalian Hsp22 with lipid membranes [J]. The Biochemical Journal, 2007, 401(2): 437−445. doi: 10.1042/BJ20061046
    [6]
    GARCIA A B, ENGLER J, IYER S, et al. Effects of osmoprotectants upon NaCl stress in rice [J]. Plant Physiology, 1997, 115(1): 159−169. doi: 10.1104/pp.115.1.159
    [7]
    TIAN L F, XIE Z J, LU C Q, et al. The trehalose-6-phosphate synthase TPS5 negatively regulates ABA signaling in Arabidopsis thaliana [J]. Plant Cell Reports, 2019, 38(8): 869−882. doi: 10.1007/s00299-019-02408-y
    [8]
    周斌辉. 巴西橡胶树6-磷酸海藻糖合成酶家族基因的克隆、表达分析及其功能验证[D]. 海口: 海南大学, 2013.

    ZHOU B H. Cloning and functional characterization of the trehalose-6-phosphate synthase gene family in Hevea brasiliensis[D]. Haikou: Hainan University, 2013. (in Chinese)
    [9]
    LI H W, ZANG B S, DENG X W, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice [J]. Planta, 2011, 234(5): 1007−1018. doi: 10.1007/s00425-011-1458-0
    [10]
    WAHL V, PONNU J, SCHLERETH A, et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana [J]. Science, 2013, 339(6120): 704−707. doi: 10.1126/science.1230406
    [11]
    VANDESTEENE L, RAMON M, LE ROY K, et al. A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis [J]. Molecular Plant, 2010, 3(2): 406−419. doi: 10.1093/mp/ssp114
    [12]
    ZANG B S, LI H W, LI W J, et al. Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice [J]. Plant Molecular Biology, 2011, 76(6): 507−522. doi: 10.1007/s11103-011-9781-1
    [13]
    杨仕梅, 张天缘, 丘日光, 等. 番茄TPS基因家族鉴定与分析 [J]. 分子植物育种, 2019, 17(16):5215−5223.

    YANG S M, ZHANG T Y, QIU R G, et al. Identification and analysis of TPS gene family in tomato [J]. Molecular Plant Breeding, 2019, 17(16): 5215−5223.(in Chinese)
    [14]
    魏兵强, 王兰兰, 张茹, 等. 辣椒TPS家族成员的鉴定与CaTPS1的表达分析 [J]. 园艺学报, 2016, 43(8):1504−1512.

    WEI B Q, WANG L L, ZHANG R, et al. Identification of CaTPS gene family and expression analysis of CaTPS1 in hot pepper [J]. Acta Horticulturae Sinica, 2016, 43(8): 1504−1512.(in Chinese)
    [15]
    陈天池, 吴月燕, 沈乐意, 等. 葡萄TPS基因家族的鉴定与表达分析[J/OL]. 分子植物育种, 2021: 1-13. (2021-07-22). https://kns.cnki.net/kcms/detail/46.1068.S.20210722.1430.018.html.

    CHEN T C, WU Y Y, SHEN L Y, et al. Identification and expression analysis of TPS genes family in grape[J/OL]. Molecular Plant Breeding, 2021: 1-13. (2021-07-22). https://kns.cnki.net/kcms/detail/46.1068.S.20210722.1430.018.html.(in Chinese)
    [16]
    杜丽璞, 徐惠君, 叶兴国, 等. 小麦转TPS基因植株的获得及其初步功能鉴定 [J]. 麦类作物学报, 2007, 27(3):369−373.

    DU L P, XU H J, YE X G, et al. Transgenic wheat plants with trehalose-6-phosphate synthase (TPS) gene and identification of their function [J]. Journal of Triticeae Crops, 2007, 27(3): 369−373.(in Chinese)
    [17]
    CORTINA C, CULIÁÑEZ-MACIÀ F A. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis [J]. Plant Science, 2005, 169(1): 75−82. doi: 10.1016/j.plantsci.2005.02.026
    [18]
    赵淑芳, 苟秉调, 魏敏, 等. 辣椒CaTPS8基因克隆与表达分析 [J]. 西北农业学报, 2022, 31(12):1568−1578.

    ZHAO S F, GOU B D, WEI M, et al. Cloning and expression analysis of CaTPS8 gene in Capsicum annuum [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(12): 1568−1578.(in Chinese)
    [19]
    LU S N, WANG J Y, CHITSAZ F, et al. CDD/SPARCLE: The conserved domain database in 2020 [J]. Nucleic Acids Research, 2020, 48(D1): D265−D268. doi: 10.1093/nar/gkz991
    [20]
    WILKINS M R, GASTEIGER E, BAIROCH A, et al. Protein identification and analysis tools in the ExPASy server [J]. Methods in Molecular Biology, 1999, 112: 531−552.
    [21]
    CHOU K C, SHEN H B. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0 [J]. PLoS One, 2010, 5(4): e9931. doi: 10.1371/journal.pone.0009931
    [22]
    JOHNSON M, ZARETSKAYA I, RAYTSELIS Y, et al. NCBI BLAST: A better web interface [J]. Nucleic Acids Research, 2008, 36(S2): W5−W9.
    [23]
    LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and clustal X version 2.0 [J]. Bioinformatics, 2007, 23(21): 2947−2948. doi: 10.1093/bioinformatics/btm404
    [24]
    MÖLLER S, CRONING M D R, APWEILER R. Evaluation of methods for the prediction of membrane spanning regions [J]. Bioinformatics, 2001, 17(7): 646−653. doi: 10.1093/bioinformatics/17.7.646
    [25]
    ALMAGRO A J J, TSIRIGOS K D, SØNDERBY C K, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks [J]. Nature Biotechnology, 2019, 37(4): 420−423. doi: 10.1038/s41587-019-0036-z
    [26]
    BLOM N, GAMMELTOFT S, BRUNAK S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites 1 [J]. Journal of Molecular Biology, 1999, 294(5): 1351−1362. doi: 10.1006/jmbi.1999.3310
    [27]
    GEOURJON C, DELÉAGE G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments [J]. Bioinformatics, 1995, 11(6): 681−684. doi: 10.1093/bioinformatics/11.6.681
    [28]
    KIEFER F, ARNOLD K, KÜNZLI M, et al. The SWISS-MODEL Repository and associated resources[J]. Nucleic Acids Research, 2009, 37(Database issue): D387-D392.
    [29]
    KUMAR S, STECHER G, LI M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms [J]. Molecular Biology and Evolution, 2018, 35(6): 1547−1549. doi: 10.1093/molbev/msy096
    [30]
    ROMBAUTS S, DÉHAIS P, VAN MONTAGU M, et al. PlantCARE, a plant cis-acting regulatory element database [J]. Nucleic Acids Research, 1999, 27(1): 295−296. doi: 10.1093/nar/27.1.295
    [31]
    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [32]
    JIANG S Y, JIN J J, SAROJAM R, et al. A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns [J]. Genome Biology and Evolution, 2019, 11(8): 2078−2098. doi: 10.1093/gbe/evz142
    [33]
    于欢. 甘薯海藻糖-6-磷酸合成酶基因IbTPS1克隆与功能鉴定[D]. 太谷: 山西农业大学, 2019.

    YU H. Cloning and functional identification of trehalose-6-phosphate synthase gene IbTPS1 from Ipomoea batatas(L. ) lam[D]. Taigu: Shanxi Agricultural University, 2019. (in Chinese)
    [34]
    丁泽红, 付莉莉, 铁韦韦, 等. 木薯MeTPS9基因克隆及表达特性分析 [J]. 生物技术通报, 2017, 33(11):84−91. doi: 10.13560/j.cnki.biotech.bull.1985.2017-0416

    DING Z H, FU L L, TIE W W, et al. Clone and expression characteristics of MeTPS9 gene in cassava [J]. Biotechnology Bulletin, 2017, 33(11): 84−91.(in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2017-0416
    [35]
    DING X D, WANG D, XIAO J L. Cloning of gs TPS9 gene from Glycine soja and study on its responses to stresses [J]. Journal of Northeast Agricultural University (English Edition), 2022, 29(1): 59−68.
    [36]
    KHATUN K, ROBIN A H K, PARK J I, et al. Molecular characterization and expression profiling of tomato GRF transcription factor family genes in response to abiotic stresses and phytohormones [J]. International Journal of Molecular Sciences, 2017, 18(5): 1056. doi: 10.3390/ijms18051056
    [37]
    DOSSA K, DIOUF D, CISSÉ N. Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response [J]. Frontiers in Plant Science, 2016, 7: 1522.
    [38]
    LIN T Y, ZHOU R, BI B, et al. Analysis of a radiation-induced dwarf mutant of a warm-season turf grass reveals potential mechanisms involved in the dwarfing mutant [J]. Scientific Reports, 2020, 10(1): 18913. doi: 10.1038/s41598-020-75421-x
    [39]
    SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance [J]. Journal of Experimental Botany, 2007, 58(2): 221−227.
    [40]
    SUGANO S, MAEDA S, HAYASHI N, et al. Tyrosine phosphorylation of a receptor-like cytoplasmic kinase, BSR1, plays a crucial role in resistance to multiple pathogens in rice [J]. The Plant Journal:for Cell and Molecular Biology, 2018, 96(6): 1137−1147. doi: 10.1111/tpj.14093
    [41]
    XU Y C, WANG Y J, MATTSON N, et al. Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: Evolution and differential expression during development and stress [J]. BMC Genomics, 2017, 18(1): 926. doi: 10.1186/s12864-017-4298-x
    [42]
    ZHOU M L, ZHANG Q, SUN Z M, et al. Trehalose metabolism-related genes in maize [J]. Journal of Plant Growth Regulation, 2014, 33(2): 256−271. doi: 10.1007/s00344-013-9368-y
    [43]
    龙娅丽, 徐子健, 朱白婢, 等. 茉莉酸甲酯诱导西瓜ClTPS1基因的表达特性及其生物学信息分析 [J]. 分子植物育种, 2016, 14(12):3299−3307.

    LONG Y L, XU Z J, ZHU B B, et al. Sequence analysis of ClTPS1 gene in watermelon and its expression characteristic after treated with MeJA [J]. Molecular Plant Breeding, 2016, 14(12): 3299−3307.(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (387) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return