Citation: | HUANG L J, WEI M, GOU B D, et al. Bioinformatics and Expression of CaTPS9 in Chili Peppers [J]. Fujian Journal of Agricultural Sciences,2023,38(7):800−808 doi: 10.19303/j.issn.1008-0384.2023.07.005 |
[1] |
王立浩, 马艳青, 张宝玺. 我国辣椒品种市场需求与育种趋势 [J]. 中国蔬菜, 2019(8):1−4. doi: 10.19928/j.cnki.1000-6346.2019.08.001
WANG L H, MA Y Q, ZHANG B X. Market demand and breeding trend of pepper varieties in China [J]. China Vegetables, 2019(8): 1−4.(in Chinese) doi: 10.19928/j.cnki.1000-6346.2019.08.001
|
[2] |
ZHU F M, LI M Y, SUN M L, et al. Plant hormone signals regulate trehalose accumulation against osmotic stress in watermelon cells [J]. Protoplasma, 2022, 259(5): 1351−1369. doi: 10.1007/s00709-021-01715-0
|
[3] |
GARG A K, KIM J K, OWENS T G, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(25): 15898−15903.
|
[4] |
SINGER M A, LINDQUIST S. Multiple effects of trehalose on protein folding in vitro and in vivo [J]. Molecular Cell, 1998, 1(5): 639−648. doi: 10.1016/S1097-2765(00)80064-7
|
[5] |
CHOWDARY T K, RAMAN B, RAMAKRISHNA T, et al. Interaction of mammalian Hsp22 with lipid membranes [J]. The Biochemical Journal, 2007, 401(2): 437−445. doi: 10.1042/BJ20061046
|
[6] |
GARCIA A B, ENGLER J, IYER S, et al. Effects of osmoprotectants upon NaCl stress in rice [J]. Plant Physiology, 1997, 115(1): 159−169. doi: 10.1104/pp.115.1.159
|
[7] |
TIAN L F, XIE Z J, LU C Q, et al. The trehalose-6-phosphate synthase TPS5 negatively regulates ABA signaling in Arabidopsis thaliana [J]. Plant Cell Reports, 2019, 38(8): 869−882. doi: 10.1007/s00299-019-02408-y
|
[8] |
周斌辉. 巴西橡胶树6-磷酸海藻糖合成酶家族基因的克隆、表达分析及其功能验证[D]. 海口: 海南大学, 2013.
ZHOU B H. Cloning and functional characterization of the trehalose-6-phosphate synthase gene family in Hevea brasiliensis[D]. Haikou: Hainan University, 2013. (in Chinese)
|
[9] |
LI H W, ZANG B S, DENG X W, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice [J]. Planta, 2011, 234(5): 1007−1018. doi: 10.1007/s00425-011-1458-0
|
[10] |
WAHL V, PONNU J, SCHLERETH A, et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana [J]. Science, 2013, 339(6120): 704−707. doi: 10.1126/science.1230406
|
[11] |
VANDESTEENE L, RAMON M, LE ROY K, et al. A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis [J]. Molecular Plant, 2010, 3(2): 406−419. doi: 10.1093/mp/ssp114
|
[12] |
ZANG B S, LI H W, LI W J, et al. Analysis of trehalose-6-phosphate synthase (TPS) gene family suggests the formation of TPS complexes in rice [J]. Plant Molecular Biology, 2011, 76(6): 507−522. doi: 10.1007/s11103-011-9781-1
|
[13] |
杨仕梅, 张天缘, 丘日光, 等. 番茄TPS基因家族鉴定与分析 [J]. 分子植物育种, 2019, 17(16):5215−5223.
YANG S M, ZHANG T Y, QIU R G, et al. Identification and analysis of TPS gene family in tomato [J]. Molecular Plant Breeding, 2019, 17(16): 5215−5223.(in Chinese)
|
[14] |
魏兵强, 王兰兰, 张茹, 等. 辣椒TPS家族成员的鉴定与CaTPS1的表达分析 [J]. 园艺学报, 2016, 43(8):1504−1512.
WEI B Q, WANG L L, ZHANG R, et al. Identification of CaTPS gene family and expression analysis of CaTPS1 in hot pepper [J]. Acta Horticulturae Sinica, 2016, 43(8): 1504−1512.(in Chinese)
|
[15] |
陈天池, 吴月燕, 沈乐意, 等. 葡萄TPS基因家族的鉴定与表达分析[J/OL]. 分子植物育种, 2021: 1-13. (2021-07-22). https://kns.cnki.net/kcms/detail/46.1068.S.20210722.1430.018.html.
CHEN T C, WU Y Y, SHEN L Y, et al. Identification and expression analysis of TPS genes family in grape[J/OL]. Molecular Plant Breeding, 2021: 1-13. (2021-07-22). https://kns.cnki.net/kcms/detail/46.1068.S.20210722.1430.018.html.(in Chinese)
|
[16] |
杜丽璞, 徐惠君, 叶兴国, 等. 小麦转TPS基因植株的获得及其初步功能鉴定 [J]. 麦类作物学报, 2007, 27(3):369−373.
DU L P, XU H J, YE X G, et al. Transgenic wheat plants with trehalose-6-phosphate synthase (TPS) gene and identification of their function [J]. Journal of Triticeae Crops, 2007, 27(3): 369−373.(in Chinese)
|
[17] |
CORTINA C, CULIÁÑEZ-MACIÀ F A. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis [J]. Plant Science, 2005, 169(1): 75−82. doi: 10.1016/j.plantsci.2005.02.026
|
[18] |
赵淑芳, 苟秉调, 魏敏, 等. 辣椒CaTPS8基因克隆与表达分析 [J]. 西北农业学报, 2022, 31(12):1568−1578.
ZHAO S F, GOU B D, WEI M, et al. Cloning and expression analysis of CaTPS8 gene in Capsicum annuum [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2022, 31(12): 1568−1578.(in Chinese)
|
[19] |
LU S N, WANG J Y, CHITSAZ F, et al. CDD/SPARCLE: The conserved domain database in 2020 [J]. Nucleic Acids Research, 2020, 48(D1): D265−D268. doi: 10.1093/nar/gkz991
|
[20] |
WILKINS M R, GASTEIGER E, BAIROCH A, et al. Protein identification and analysis tools in the ExPASy server [J]. Methods in Molecular Biology, 1999, 112: 531−552.
|
[21] |
CHOU K C, SHEN H B. A new method for predicting the subcellular localization of eukaryotic proteins with both single and multiple sites: Euk-mPLoc 2.0 [J]. PLoS One, 2010, 5(4): e9931. doi: 10.1371/journal.pone.0009931
|
[22] |
JOHNSON M, ZARETSKAYA I, RAYTSELIS Y, et al. NCBI BLAST: A better web interface [J]. Nucleic Acids Research, 2008, 36(S2): W5−W9.
|
[23] |
LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and clustal X version 2.0 [J]. Bioinformatics, 2007, 23(21): 2947−2948. doi: 10.1093/bioinformatics/btm404
|
[24] |
MÖLLER S, CRONING M D R, APWEILER R. Evaluation of methods for the prediction of membrane spanning regions [J]. Bioinformatics, 2001, 17(7): 646−653. doi: 10.1093/bioinformatics/17.7.646
|
[25] |
ALMAGRO A J J, TSIRIGOS K D, SØNDERBY C K, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks [J]. Nature Biotechnology, 2019, 37(4): 420−423. doi: 10.1038/s41587-019-0036-z
|
[26] |
BLOM N, GAMMELTOFT S, BRUNAK S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites 1 [J]. Journal of Molecular Biology, 1999, 294(5): 1351−1362. doi: 10.1006/jmbi.1999.3310
|
[27] |
GEOURJON C, DELÉAGE G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments [J]. Bioinformatics, 1995, 11(6): 681−684. doi: 10.1093/bioinformatics/11.6.681
|
[28] |
KIEFER F, ARNOLD K, KÜNZLI M, et al. The SWISS-MODEL Repository and associated resources[J]. Nucleic Acids Research, 2009, 37(Database issue): D387-D392.
|
[29] |
KUMAR S, STECHER G, LI M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms [J]. Molecular Biology and Evolution, 2018, 35(6): 1547−1549. doi: 10.1093/molbev/msy096
|
[30] |
ROMBAUTS S, DÉHAIS P, VAN MONTAGU M, et al. PlantCARE, a plant cis-acting regulatory element database [J]. Nucleic Acids Research, 1999, 27(1): 295−296. doi: 10.1093/nar/27.1.295
|
[31] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
|
[32] |
JIANG S Y, JIN J J, SAROJAM R, et al. A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns [J]. Genome Biology and Evolution, 2019, 11(8): 2078−2098. doi: 10.1093/gbe/evz142
|
[33] |
于欢. 甘薯海藻糖-6-磷酸合成酶基因IbTPS1克隆与功能鉴定[D]. 太谷: 山西农业大学, 2019.
YU H. Cloning and functional identification of trehalose-6-phosphate synthase gene IbTPS1 from Ipomoea batatas(L. ) lam[D]. Taigu: Shanxi Agricultural University, 2019. (in Chinese)
|
[34] |
丁泽红, 付莉莉, 铁韦韦, 等. 木薯MeTPS9基因克隆及表达特性分析 [J]. 生物技术通报, 2017, 33(11):84−91. doi: 10.13560/j.cnki.biotech.bull.1985.2017-0416
DING Z H, FU L L, TIE W W, et al. Clone and expression characteristics of MeTPS9 gene in cassava [J]. Biotechnology Bulletin, 2017, 33(11): 84−91.(in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2017-0416
|
[35] |
DING X D, WANG D, XIAO J L. Cloning of gs TPS9 gene from Glycine soja and study on its responses to stresses [J]. Journal of Northeast Agricultural University (English Edition), 2022, 29(1): 59−68.
|
[36] |
KHATUN K, ROBIN A H K, PARK J I, et al. Molecular characterization and expression profiling of tomato GRF transcription factor family genes in response to abiotic stresses and phytohormones [J]. International Journal of Molecular Sciences, 2017, 18(5): 1056. doi: 10.3390/ijms18051056
|
[37] |
DOSSA K, DIOUF D, CISSÉ N. Genome-wide investigation of Hsf genes in sesame reveals their segmental duplication expansion and their active role in drought stress response [J]. Frontiers in Plant Science, 2016, 7: 1522.
|
[38] |
LIN T Y, ZHOU R, BI B, et al. Analysis of a radiation-induced dwarf mutant of a warm-season turf grass reveals potential mechanisms involved in the dwarfing mutant [J]. Scientific Reports, 2020, 10(1): 18913. doi: 10.1038/s41598-020-75421-x
|
[39] |
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance [J]. Journal of Experimental Botany, 2007, 58(2): 221−227.
|
[40] |
SUGANO S, MAEDA S, HAYASHI N, et al. Tyrosine phosphorylation of a receptor-like cytoplasmic kinase, BSR1, plays a crucial role in resistance to multiple pathogens in rice [J]. The Plant Journal:for Cell and Molecular Biology, 2018, 96(6): 1137−1147. doi: 10.1111/tpj.14093
|
[41] |
XU Y C, WANG Y J, MATTSON N, et al. Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: Evolution and differential expression during development and stress [J]. BMC Genomics, 2017, 18(1): 926. doi: 10.1186/s12864-017-4298-x
|
[42] |
ZHOU M L, ZHANG Q, SUN Z M, et al. Trehalose metabolism-related genes in maize [J]. Journal of Plant Growth Regulation, 2014, 33(2): 256−271. doi: 10.1007/s00344-013-9368-y
|
[43] |
龙娅丽, 徐子健, 朱白婢, 等. 茉莉酸甲酯诱导西瓜ClTPS1基因的表达特性及其生物学信息分析 [J]. 分子植物育种, 2016, 14(12):3299−3307.
LONG Y L, XU Z J, ZHU B B, et al. Sequence analysis of ClTPS1 gene in watermelon and its expression characteristic after treated with MeJA [J]. Molecular Plant Breeding, 2016, 14(12): 3299−3307.(in Chinese)
|