• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 38 Issue 7
Jul.  2023
Turn off MathJax
Article Contents
ZHU Y, SUN J M, LOU Q, et al. GC-MS Analysis on Volatiles of Iris lactea var. chinensis at Different Flowering Stages [J]. Fujian Journal of Agricultural Sciences,2023,38(7):792−799 doi: 10.19303/j.issn.1008-0384.2023.07.004
Citation: ZHU Y, SUN J M, LOU Q, et al. GC-MS Analysis on Volatiles of Iris lactea var. chinensis at Different Flowering Stages [J]. Fujian Journal of Agricultural Sciences,2023,38(7):792−799 doi: 10.19303/j.issn.1008-0384.2023.07.004

GC-MS Analysis on Volatiles of Iris lactea var. chinensis at Different Flowering Stages

doi: 10.19303/j.issn.1008-0384.2023.07.004
  • Received Date: 2022-12-13
  • Rev Recd Date: 2023-03-15
  • Available Online: 2023-07-06
  • Publish Date: 2023-07-28
  •   Objective   Floral fragrance and release of Iris at different stages were analyzed using GC-MS.   Methods  Volatiles in the flowers of Iris lactea var. chinensis (Fisch.) Koidz at budding, blooming, and fading stages were determined by HS-SPME-GC-MS.   Result   The analysis identified 69 distinct aromatics. The continuously released volatiles in the entire flowering period were mainly ketones, terpenes, and aldehydes. There were also alcohols, esters, as well as in smaller quantities of alkanes, benzenoids, and nitrogenous compounds. At different flowering stages, hexanal, cyclohexanone, 5-hepten-2-one, 6-methyl- and β−irone were detected in the buds, hexanal, (−)-β−pinene, and 5-hepten-2-one, 6-methyl- in the blooms, and (-)-β−pinene, 5-hepten-2-one, 6-methyl-, hexanal, phenylethyl alcohol, and cyclohexanone in the fading flowers. The OPLS-DA showed differentiations on heptane, 3-methyl-, 5-hepten-2-one, 6-methyl-, (−)-β−pinene, hexanoic acid, ethyl ester, α−pinene, 3-carene, linalool, phenethyl alcohol, decanoic acid, ethyl ester, and β−irone at these stages. The calculated odor activity values (OAVs) on pyrazine, 2-methoxy-3-(1-methylpropyl)-, hexanoic acid, ethyl ester, linalool, nonanal, hexanal, 2-nonenal, and (E)- indicated that these were the characteristic aromatic substances of I. lactea var. chinensis and that pyrazine and 2-methoxy-3-(1-methylpropyl)- significantly greater in quantity (P<0.01).  Conclusion   For the first time, the chemical composition of the fragrance of I. lactea var. chinensis flowers was analyzed, and compounds identified in detail. The released volatiles differed significantly during the floral development. It was at the fading stage when the fragrance peaked with the major aromatic contributors including hexanal, 5-hepten-2-one, 6-methyl-, cyclohexanone, and phenethyl alcohol.
  • loading
  • [1]
    陈秀中, 王琪. 中华民族传统赏花理论探微 [J]. 北京林业大学学报, 2001, 23(S1):16−21.

    CHEN X Z, WANG Q. Studies on Chinese principles in appreciating traditional flowers [J]. Journal of Beijing Forestry University, 2001, 23(S1): 16−21.(in Chinese)
    [2]
    PICHERSKY E, GERSHENZON J. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense [J]. Current Opinion in Plant Biology, 2002, 5(3): 237−243. doi: 10.1016/S1369-5266(02)00251-0
    [3]
    许玉凤, 史国旭, 金罡, 等. 鸢尾属植物马蔺(Iris lactea Pall. var. chinensis)的研究进展 [J]. 种子, 2011, 30(4):67−70. doi: 10.3969/j.issn.1001-4705.2011.04.018

    XU Y F, SHI G X, JIN G, et al. Recent progresses in the research of iris lactea pall. var. chinensis [J]. Seed, 2011, 30(4): 67−70.(in Chinese) doi: 10.3969/j.issn.1001-4705.2011.04.018
    [4]
    刘玉艳, 赵会芝, 伍敏华, 等. 干旱胁迫下马蔺与高羊茅的生理反应比较 [J]. 河北农业大学学报, 2008, 31(4):41−46. doi: 10.3969/j.issn.1000-1573.2008.04.008

    LIU Y Y, ZHAO H Z, WU M H, et al. Physiological responses of Iris lactea var. chinensis and Festuca arundinaces to drought stress [J]. Journal of Agricultural University of Hebei, 2008, 31(4): 41−46.(in Chinese) doi: 10.3969/j.issn.1000-1573.2008.04.008
    [5]
    袁泽斌. 马蔺对混合盐胁迫的响应及盐碱土改良效果的研究[D]. 苏州: 苏州大学, 2020

    YUAN Z B. Study on the response of iris lactea var. chinensis to mixed saline stress and the improvement effect of saline-alkali soil[D]. Suzhou: Soochow University, 2020. (in Chinese)
    [6]
    GOODRICH K R, RAGUSO R A. The olfactory component of floral display in Asimina and Deeringothamnus (Annonaceae) [J]. The New Phytologist, 2009, 183(2): 457−469. doi: 10.1111/j.1469-8137.2009.02868.x
    [7]
    ASCRIZZI R, FLAMINI G. Iris lutescens on serpentine soil: Volatile emission profiles in different organs of its two colour morphs [J]. Plant Biosystems - an International Journal Dealing With All Aspects of Plant Biology, 2021, 155(2): 406−414. doi: 10.1080/11263504.2020.1756973
    [8]
    WANG H, CONCHOU L, BESSIÈRE J M, et al. Flower color polymorphism in Iris lutescens (Iridaceae): Biochemical analyses in light of plant-insect interactions [J]. Phytochemistry, 2013, 94: 123−134. doi: 10.1016/j.phytochem.2013.05.007
    [9]
    YUAN Y, SUN Y, ZHAO Y C, et al. Identification of floral scent profiles in bearded irises [J]. Molecules, 2019, 24(9): 1773. doi: 10.3390/molecules24091773
    [10]
    ZITO P, ROSSELLI S, BRUNO M, et al. Floral scent in Iris planifolia (Iridaceae) suggests food reward [J]. Phytochemistry, 2019, 158: 86−90. doi: 10.1016/j.phytochem.2018.11.011
    [11]
    孔兰, 樊荣辉, 林榕燕, 等. 杂交兰花色花香生物合成途径的转录组分析 [J]. 西北植物学报, 2021, 41(1):86−95.

    KONG L, FAN R H, LIN R Y, et al. Transcriptome analysis of pigment biosynthesis and floral scent biosynthesis in Cymbidium hybrid [J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(1): 86−95.(in Chinese)
    [12]
    程玉芬, 张志伟, 贾永霞, 等. 对叶榕花序不同发育时期气味成分的变化及其对传粉者的吸引作用 [J]. 热带亚热带植物学报, 2019, 27(3):299−308. doi: 10.11926/jtsb.4016

    CHENG Y F, ZHANG Z W, JIA Y X, et al. Odour composition variation at different stages of Ficus hispida inflorescence and the attraction to pollinators [J]. Journal of Tropical and Subtropical Botany, 2019, 27(3): 299−308.(in Chinese) doi: 10.11926/jtsb.4016
    [13]
    徐鑫鑫, 秦民坚. 马蔺根的化学成分研究 [J]. 药学与临床研究, 2010, 18(3):260−261,264.

    XU X X, QIN M J. Chemical constituents in the roots of iris lactea Pall. var. Chinensis [J]. Pharmaceutical and Clinical Research, 2010, 18(3): 260−261,264.(in Chinese)
    [14]
    YUN J, CUI C J, ZHANG S H, et al. Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea [J]. Food Chemistry, 2021, 360: 130033. doi: 10.1016/j.foodchem.2021.130033
    [15]
    VAN GEMERT L J. Compilations of odour threshold values in air, water and other media[M]. Boelens Aroma Chemical Information Service, 2003.
    [16]
    李程勋, 李爱萍, 徐晓俞, 等. 百香果果皮精油提取及香气成分分析 [J]. 福建农业学报, 2019, 34(4):495−501.

    LI C X, LI A P, XU X Y, et al. Extraction and aromatics of essential oil from passion fruit peels [J]. Fujian Journal of Agricultural Sciences, 2019, 34(4): 495−501.(in Chinese)
    [17]
    周晨晨, 范俊俊, 谭瑞楠, 等. ‘白兰地’海棠不同花期与不同花器官的香气成分分析 [J]. 福建农业学报, 2022, 37(8):1038−1047.

    ZHOU C C, FAN J J, TAN R N, et al. Aromatics in floral organs of Malus Brandywine during different flowering stages [J]. Fujian Journal of Agricultural Sciences, 2022, 37(8): 1038−1047.(in Chinese)
    [18]
    范俊俊. 观赏海棠花朵香型分析与判别模型构建[D]. 南京: 南京林业大学, 2019.

    FAN J J. Analysis and discrimination model construction of flower scent intensity type for flowering crabapple[D]. Nanjing: Nanjing Forestry University, 2019. (in Chinese)
    [19]
    肖文芳, 李佐, 陈和明, 等. 基于HS-SPME-GC-MS的4种不同蝴蝶兰种质资源花朵挥发性成分比较分析 [J]. 中国农业大学学报, 2021, 26(3):38−52.

    XIAO W F, LI Z, CHEN H M, et al. Analysis of volatile components in flowers of four different Phalaenopsis germplasm resources by headspace solid phase microextraction coupled with gas chromatography-mass spectrometry [J]. Journal of China Agricultural University, 2021, 26(3): 38−52.(in Chinese)
    [20]
    强文彦, 孟庆然, 张志国, 等. 萱草不同品种花瓣挥发性物质的HS-SPME-GC-MS分析 [J]. 园艺学报, 2023, 50(1):116−130.

    QIANG W Y, MENG Q R, ZHANG Z G, et al. Analysis of petal volatile components among different Hemerocallis cultivars based on HS-SPME-GC-MS [J]. Acta Horticulturae Sinica, 2023, 50(1): 116−130.(in Chinese)
    [21]
    周小理, 朱思怡, 周一鸣, 等. 不同萱草杂交品种花部风味物质分析[J/OL]. 分子植物育种: 1−12. [2023-03-12]. http://kns.cnki.net/kcms/detail/46.1068.S.20221015.1117.004.html.

    ZHOU X L, ZHU S Y, ZHOU Y M, et al. Analysis of flavor substances in flowers of different hybrids of hemerocallis [J]. Molecular Plant Breeding: 1−12. [2023-03-12]. http://kns.cnki.net/kcms/detail/46.1068.S.20221015.1117.004.html (in Chinese)
    [22]
    KNUDSEN J T, ERIKSSON R, GERSHENZON J, et al. Diversity and distribution of floral scent [J]. The Botanical Review, 2006, 72(1): 1. doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
    [23]
    徐瑾, 李莹莹, 郑成淑, 等. 菊花不同花期及花序不同部位香气成分和挥发研究 [J]. 西北植物学报, 2012, 32(4):722−730.

    XU J, LI Y Y, ZHENG C S, et al. Studies of aroma compounds in Chrysanthemum in different florescence and inflorescence parts and aroma releasing [J]. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(4): 722−730.(in Chinese)
    [24]
    邹晶晶, 蔡璇, 曾祥玲, 等. 桂花不同品种开花过程中香气活性物质的变化 [J]. 园艺学报, 2017, 44(8):1517−1534.

    ZOU J J, CAI X, ZENG X L, et al. Changes of aroma-active compounds in different cultivars of Osmanthus fragrans during flowering [J]. Acta Horticulturae Sinica, 2017, 44(8): 1517−1534.(in Chinese)
    [25]
    辛晓栋, 温欣宇, 降佳君, 等. 基于非靶向代谢组学的槟榔花香关键代谢物的筛选[J]. 热带作物学报, 2023,44(7):1328−1336.

    XIN X D, WEN X Y, XIE J J, et al. Screening of key metabolites of areca flower fragrance based on non-targeted metabonomics [J]. Chinese Journal of Tropical Crops, 2023,44(7):1328−1336. (in Chinese)
    [26]
    WOO J, YANG H, YOON M, et al. 3-carene, a phytoncide from pine tree has a sleep-enhancing effect by targeting the GABAA-benzodiazepine receptors [J]. Experimental Neurobiology, 2019, 28(5): 593−601. doi: 10.5607/en.2019.28.5.593
    [27]
    SCHIESTL F P. The evolution of floral scent and insect chemical communication [J]. Ecology Letters, 2010, 13(5): 643−656. doi: 10.1111/j.1461-0248.2010.01451.x
    [28]
    LILLEY B D, BREWER J H. The selective antibacterial action of phenylethyl alcohol [J]. Journal of the American Pharmaceutical Association (Scientific edition), 1953, 42(1): 6−8. doi: 10.1002/jps.3030420103
    [29]
    ROSS G N, FALES H M, LLOYD H A, et al. Novel chemistry of abdominal defensive glands of nymphalid butterfly Agraulis vanillae [J]. Journal of Chemical Ecology, 2001, 27(6): 1219−1228. doi: 10.1023/A:1010372114144
    [30]
    ZERINGÓTA V, PEREIRA-JUNIOR R A, SARRIA A L F, et al. Identification of a non-host semiochemical from miniature pinscher, Canis lupus familiaris, that repels Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) [J]. Ticks and Tick-Borne Diseases, 2021, 12(1): 101582. doi: 10.1016/j.ttbdis.2020.101582
    [31]
    CARDOZA Y J, ALBORN H T, TUMLINSON J H. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage [J]. Journal of Chemical Ecology, 2002, 28(1): 161−174. doi: 10.1023/A:1013523104853
    [32]
    VENCL F V, OTTENS K, DIXON M M, et al. Pyrazine emission by a tropical firefly: An example of chemical aposematism? [J]. Biotropica, 2016, 48(5): 645−655. doi: 10.1111/btp.12336
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (511) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return