• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
REN X Y, LI W X, LIN X Z, et al. Response Mechanism of Lactobacillus plantarum R23 to Sulfur Dioxide Stress [J]. Fujian Journal of Agricultural Sciences,2022,37(6):802−808 doi: 10.19303/j.issn.1008-0384.2022.06.016
Citation: REN X Y, LI W X, LIN X Z, et al. Response Mechanism of Lactobacillus plantarum R23 to Sulfur Dioxide Stress [J]. Fujian Journal of Agricultural Sciences,2022,37(6):802−808 doi: 10.19303/j.issn.1008-0384.2022.06.016

Response Mechanism of Lactobacillus plantarum R23 to Sulfur Dioxide Stress

doi: 10.19303/j.issn.1008-0384.2022.06.016
  • Received Date: 2021-12-03
  • Rev Recd Date: 2022-05-23
  • Available Online: 2022-06-20
  • Publish Date: 2022-06-28
  •   Objective  Roles of antioxidase and phospholipid fatty acid (PLFA) play in the response of Lactobacillus plantarum R23 to sulfur dioxide stress were studied.   Methods  L. plantarum R23 was exposed to a gradient of sulfur dioxide to observe the ultrastructural changes on the bacterium under scanning electron microscopy, determine the antioxidase activity and MDA content by ELISA and coomassie brilliant blue method, and analyze the PLFA composition using MIDI.  Results  The increasing sulfur dioxide stress induced in L. plantarum R23 a high antioxidase activity, especially CAT. Under 80 mg·L−1 of sulfur dioxide exposure, 1.64-fold rise on SOD activity, 2.14-fold on CAT, and 1.62-fold on GPX were found in the bacteria that afforded a relatively low increasing rate on MDA and maintained a largely intact morphology. However, the imposition of 120 mg·L−1 sulfur dioxide lowered the antioxidase activity and intensified the lipid peroxidation with appearance of wrinkles on the cellular surface. The PLFAs underwent varying degrees of increases on saturated, straight-chain, long-chain, and cyclopropane fatty acids under the stress. The straight-chain fatty acids accounted for 52% of all with a ratio to the branched-chain fatty acids significantly raised from 7.15 to 9.72.  Conclusion  When L. plantarum R23 encountered sulfur dioxide stress, by increasing the antioxidase activity and/or altering the PLFA composition (especially the saturated, straight-chain, long-chain, and cyclopropane fatty acids) it lowered the cell membrane permeability to deter the invasion of toxic substances or removed the excessive free radicals to prevent and mitigate possible damage.
  • loading
  • [1]
    FERNÁNDEZ-PÉREZ R, TENORIO RODRÍGUEZ C, RUIZ-LARREA F. Fluorescence microscopy to monitor wine malolactic fermentation [J]. Food Chemistry, 2019, 274: 228−233. doi: 10.1016/j.foodchem.2018.08.088
    [2]
    JIANG J, SUMBY K M, SUNDSTROM J F, et al. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment [J]. Food Microbiology, 2018, 73: 150−159. doi: 10.1016/j.fm.2018.01.005
    [3]
    LIN X Z, HE Z G, LI W X, et al. Validation of reference genes for real-time quantitative polymerase chain reaction analysis in Lactobacillus plantarum R23 under sulfur dioxide stress conditions [J]. Australian Journal of Grape and Wine Research, 2018, 24(3): 390−395. doi: 10.1111/ajgw.12331
    [4]
    李维新, 何志刚, 郑宝东, 等. 植物乳杆菌R23产苹果酸乳酸酶特性研究 [J]. 中国食品学报, 2012, 12(5):35−40. doi: 10.3969/j.issn.1009-7848.2012.05.006

    LI W X, HE Z G, ZHENG B D, et al. Studies on characteristics of Lactobacillus plantarum R23 in producing malolactic enzyme [J]. Journal of Chinese Institute of Food Science and Technology, 2012, 12(5): 35−40.(in Chinese) doi: 10.3969/j.issn.1009-7848.2012.05.006
    [5]
    YI H L, LIU J, ZHENG K. Effect of sulfur dioxide hydrates on cell cycle, sister chromatid exchange, and micronuclei in barley [J]. Ecotoxicology and Environmental Safety, 2005, 62(3): 421−426. doi: 10.1016/j.ecoenv.2004.11.005
    [6]
    JIANG C M, SHI J L, CHEN X Q, et al. Effect of sulfur dioxide and ethanol concentration on fungal profile and ochratoxin a production by Aspergillus carbonarius during wine making [J]. Food Control, 2015, 47: 656−663. doi: 10.1016/j.foodcont.2014.08.011
    [7]
    LINLEY E, DENYER S P, MCDONNELL G, et al. Use of hydrogen peroxide as a biocide: New consideration of its mechanisms of biocidal action [J]. Journal of Antimicrobial Chemotherapy, 2012, 67(7): 1589−1596. doi: 10.1093/jac/dks129
    [8]
    HOUGAARD A B, PINDSTRUP H, ARNEBORG N, et al. Free radical formation by Lactobacillus acidophilus NCFM is enhanced by antioxidants and decreased by catalase [J]. Food Research International, 2016, 79: 81−87. doi: 10.1016/j.foodres.2015.12.003
    [9]
    HUANG Y Y, MORVAY A A, SHI X M, et al. Comparison of oxidative stress response and biofilm formation of Listeria monocytogenes serotypes 4b and 1/2a [J]. Food Control, 2018, 85: 416−422. doi: 10.1016/j.foodcont.2017.10.007
    [10]
    FIOCCO D, CAPOZZI V, GOFFIN P, et al. Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum [J]. Applied Microbiology and Biotechnology, 2007, 77(4): 909−915. doi: 10.1007/s00253-007-1228-x
    [11]
    HUANG R H, PAN M F, WAN C X, et al. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress [J]. Journal of Dairy Science, 2016, 99(2): 1002−1010. doi: 10.3168/jds.2015-9993
    [12]
    BROADBENT J R, LARSEN R L, DEIBEL V, et al. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress [J]. Journal of Bacteriology, 2010, 192(9): 2445−2458. doi: 10.1128/JB.01618-09
    [13]
    蔡秋杏, 吴燕燕, 李来好, 等. 来源于腌干鱼的乳酸菌中抗氧化酶及胞外多糖研究 [J]. 水产学报, 2017, 41(6):952−961.

    CAI Q X, WU Y Y, LI L H, et al. Study on antioxidant enzymes and exopolysaccharides of lactic acid bacteria separated from salt-dried fish products [J]. Journal of Fisheries of China, 2017, 41(6): 952−961.(in Chinese)
    [14]
    LIN J Z, ZOU Y X, CAO K L, et al. The impact of heterologous catalase expression and superoxide dismutase overexpression on enhancing the oxidative resistance in Lactobacillus casei [J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(5): 703−711.
    [15]
    KULLISAAR T, SONGISEPP E, AUNAPUU M, et al. Complete glutathione system in probiotic Lactobacillus fermentum ME-3 [J]. Prikladnaia Biokhimiia i Mikrobiologiia, 2010, 46(5): 527−531.
    [16]
    MONTANARI C, SADO KAMDEM S L, SERRAZANETTI D I, et al. Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses [J]. Food Microbiology, 2010, 27(4): 493−502. doi: 10.1016/j.fm.2009.12.003
    [17]
    张一敏. 三种有机酸对单增李斯特菌诱导性耐酸响应研究[D]. 泰安: 山东农业大学, 2014

    ZHANG Y M. Adaption to three types of organic acid induces resistance to acid in Listeria monocytogenes[D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
    [18]
    GIOTIS E S, MCDOWELL D A, BLAIR I S, et al. Role of branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes [J]. Applied and Environmental Microbiology, 2007, 73(3): 997−1001. doi: 10.1128/AEM.00865-06
    [19]
    ZHANG Y M, ROCK C O. Membrane lipid homeostasis in bacteria [J]. Nature Reviews Microbiology, 2008, 6(3): 222−233. doi: 10.1038/nrmicro1839
    [20]
    MASTRONICOLIS S K, BERBERI A, DIAKOGIANNIS I, et al. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH [J]. Antonie Van Leeuwenhoek, 2010, 98(3): 307−316. doi: 10.1007/s10482-010-9439-z
    [21]
    郑昀昀, 陈茂娇, 王敏, 等. 甲苯胁迫下有机溶剂耐受菌Anoxybacillus flavithermus ssp. yunnanesis E13T膜脂肪酸的变化 [J]. 微生物学报, 2015, 55(6):719−724.

    ZHENG Y Y, CHEN M J, WANG M, et al. Adaptation of Anoxybacillus flavithermus ssp. yunnanesis E13T to toluene at the level of fatty acid composition of membrane [J]. Acta Microbiologica Sinica, 2015, 55(6): 719−724.(in Chinese)
    [22]
    TARANTO M P, FERNANDEZ MURGA M L, LORCA G, et al. Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri [J]. Journal of Applied Microbiology, 2003, 95(1): 86−91. doi: 10.1046/j.1365-2672.2003.01962.x
    [23]
    袁峥. 嗜酸乳杆菌耐酸机理研究[D]. 新乡: 河南科技学院, 2013

    YUAN Z. Study on the acid tolerance-mechanism of Lactobacillus acidophilus[D]. Xinxiang: Henan Institute of Science and Technology, 2013. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (330) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return