Citation: | REN X Y, LI W X, LIN X Z, et al. Response Mechanism of Lactobacillus plantarum R23 to Sulfur Dioxide Stress [J]. Fujian Journal of Agricultural Sciences,2022,37(6):802−808 doi: 10.19303/j.issn.1008-0384.2022.06.016 |
[1] |
FERNÁNDEZ-PÉREZ R, TENORIO RODRÍGUEZ C, RUIZ-LARREA F. Fluorescence microscopy to monitor wine malolactic fermentation [J]. Food Chemistry, 2019, 274: 228−233. doi: 10.1016/j.foodchem.2018.08.088
|
[2] |
JIANG J, SUMBY K M, SUNDSTROM J F, et al. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment [J]. Food Microbiology, 2018, 73: 150−159. doi: 10.1016/j.fm.2018.01.005
|
[3] |
LIN X Z, HE Z G, LI W X, et al. Validation of reference genes for real-time quantitative polymerase chain reaction analysis in Lactobacillus plantarum R23 under sulfur dioxide stress conditions [J]. Australian Journal of Grape and Wine Research, 2018, 24(3): 390−395. doi: 10.1111/ajgw.12331
|
[4] |
李维新, 何志刚, 郑宝东, 等. 植物乳杆菌R23产苹果酸乳酸酶特性研究 [J]. 中国食品学报, 2012, 12(5):35−40. doi: 10.3969/j.issn.1009-7848.2012.05.006
LI W X, HE Z G, ZHENG B D, et al. Studies on characteristics of Lactobacillus plantarum R23 in producing malolactic enzyme [J]. Journal of Chinese Institute of Food Science and Technology, 2012, 12(5): 35−40.(in Chinese) doi: 10.3969/j.issn.1009-7848.2012.05.006
|
[5] |
YI H L, LIU J, ZHENG K. Effect of sulfur dioxide hydrates on cell cycle, sister chromatid exchange, and micronuclei in barley [J]. Ecotoxicology and Environmental Safety, 2005, 62(3): 421−426. doi: 10.1016/j.ecoenv.2004.11.005
|
[6] |
JIANG C M, SHI J L, CHEN X Q, et al. Effect of sulfur dioxide and ethanol concentration on fungal profile and ochratoxin a production by Aspergillus carbonarius during wine making [J]. Food Control, 2015, 47: 656−663. doi: 10.1016/j.foodcont.2014.08.011
|
[7] |
LINLEY E, DENYER S P, MCDONNELL G, et al. Use of hydrogen peroxide as a biocide: New consideration of its mechanisms of biocidal action [J]. Journal of Antimicrobial Chemotherapy, 2012, 67(7): 1589−1596. doi: 10.1093/jac/dks129
|
[8] |
HOUGAARD A B, PINDSTRUP H, ARNEBORG N, et al. Free radical formation by Lactobacillus acidophilus NCFM is enhanced by antioxidants and decreased by catalase [J]. Food Research International, 2016, 79: 81−87. doi: 10.1016/j.foodres.2015.12.003
|
[9] |
HUANG Y Y, MORVAY A A, SHI X M, et al. Comparison of oxidative stress response and biofilm formation of Listeria monocytogenes serotypes 4b and 1/2a [J]. Food Control, 2018, 85: 416−422. doi: 10.1016/j.foodcont.2017.10.007
|
[10] |
FIOCCO D, CAPOZZI V, GOFFIN P, et al. Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum [J]. Applied Microbiology and Biotechnology, 2007, 77(4): 909−915. doi: 10.1007/s00253-007-1228-x
|
[11] |
HUANG R H, PAN M F, WAN C X, et al. Physiological and transcriptional responses and cross protection of Lactobacillus plantarum ZDY2013 under acid stress [J]. Journal of Dairy Science, 2016, 99(2): 1002−1010. doi: 10.3168/jds.2015-9993
|
[12] |
BROADBENT J R, LARSEN R L, DEIBEL V, et al. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress [J]. Journal of Bacteriology, 2010, 192(9): 2445−2458. doi: 10.1128/JB.01618-09
|
[13] |
蔡秋杏, 吴燕燕, 李来好, 等. 来源于腌干鱼的乳酸菌中抗氧化酶及胞外多糖研究 [J]. 水产学报, 2017, 41(6):952−961.
CAI Q X, WU Y Y, LI L H, et al. Study on antioxidant enzymes and exopolysaccharides of lactic acid bacteria separated from salt-dried fish products [J]. Journal of Fisheries of China, 2017, 41(6): 952−961.(in Chinese)
|
[14] |
LIN J Z, ZOU Y X, CAO K L, et al. The impact of heterologous catalase expression and superoxide dismutase overexpression on enhancing the oxidative resistance in Lactobacillus casei [J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(5): 703−711.
|
[15] |
KULLISAAR T, SONGISEPP E, AUNAPUU M, et al. Complete glutathione system in probiotic Lactobacillus fermentum ME-3 [J]. Prikladnaia Biokhimiia i Mikrobiologiia, 2010, 46(5): 527−531.
|
[16] |
MONTANARI C, SADO KAMDEM S L, SERRAZANETTI D I, et al. Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses [J]. Food Microbiology, 2010, 27(4): 493−502. doi: 10.1016/j.fm.2009.12.003
|
[17] |
张一敏. 三种有机酸对单增李斯特菌诱导性耐酸响应研究[D]. 泰安: 山东农业大学, 2014
ZHANG Y M. Adaption to three types of organic acid induces resistance to acid in Listeria monocytogenes[D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
|
[18] |
GIOTIS E S, MCDOWELL D A, BLAIR I S, et al. Role of branched-chain fatty acids in pH stress tolerance in Listeria monocytogenes [J]. Applied and Environmental Microbiology, 2007, 73(3): 997−1001. doi: 10.1128/AEM.00865-06
|
[19] |
ZHANG Y M, ROCK C O. Membrane lipid homeostasis in bacteria [J]. Nature Reviews Microbiology, 2008, 6(3): 222−233. doi: 10.1038/nrmicro1839
|
[20] |
MASTRONICOLIS S K, BERBERI A, DIAKOGIANNIS I, et al. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH [J]. Antonie Van Leeuwenhoek, 2010, 98(3): 307−316. doi: 10.1007/s10482-010-9439-z
|
[21] |
郑昀昀, 陈茂娇, 王敏, 等. 甲苯胁迫下有机溶剂耐受菌Anoxybacillus flavithermus ssp. yunnanesis E13T膜脂肪酸的变化 [J]. 微生物学报, 2015, 55(6):719−724.
ZHENG Y Y, CHEN M J, WANG M, et al. Adaptation of Anoxybacillus flavithermus ssp. yunnanesis E13T to toluene at the level of fatty acid composition of membrane [J]. Acta Microbiologica Sinica, 2015, 55(6): 719−724.(in Chinese)
|
[22] |
TARANTO M P, FERNANDEZ MURGA M L, LORCA G, et al. Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri [J]. Journal of Applied Microbiology, 2003, 95(1): 86−91. doi: 10.1046/j.1365-2672.2003.01962.x
|
[23] |
袁峥. 嗜酸乳杆菌耐酸机理研究[D]. 新乡: 河南科技学院, 2013
YUAN Z. Study on the acid tolerance-mechanism of Lactobacillus acidophilus[D]. Xinxiang: Henan Institute of Science and Technology, 2013. (in Chinese)
|