• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
XU S Q, ZHANG S Y, ZHANG W P, et al. Temperature-induced Feminization of Channel Catfish [J]. Fujian Journal of Agricultural Sciences,2022,37(6):741−747. DOI: 10.19303/j.issn.1008-0384.2022.06.008
Citation: XU S Q, ZHANG S Y, ZHANG W P, et al. Temperature-induced Feminization of Channel Catfish [J]. Fujian Journal of Agricultural Sciences,2022,37(6):741−747. DOI: 10.19303/j.issn.1008-0384.2022.06.008

Temperature-induced Feminization of Channel Catfish

More Information
  • Received Date: February 28, 2022
  • Revised Date: May 04, 2022
  •   Objective  Water temperature required to induce feminization on male channel catfish fries before sex differentiation was determined.
      Method   One-dah channel catfish fries were treated for 30 d in water at the temperature of (30±0.5) ℃ (T-30, CK), (33±0.5) ℃ (T-33) or (36±0.5) ℃ (T-36). Growth and rates of survival, ovarian formation, and sex reversal of individual fish that had ovaries differentiated and formed in 60 d with positive genetic sex identification were measured, calculated, and recorded. In each group, the ovarian development of XX and XY females as determined by the anatomy and H&E staining sections was compared and analyzed. Subsequently, qRT-PCR was used to detect the expressions of foxl2 and dmrt1 in XX and XY female ovaries as well as XY male testis at 150 dahs.
      Result   The survival rates of the fries under T-30, T-33, and T-36 were 95.33%, 91.33%, and 82.67%, respectively. The body length of the fish under T-30 measured at 9.13 cm, under T-33 at 10.14 cm, and under T-36 at 8.80 cm, while the body weighed at 6.31 g for CK, 9.76 g for those under T-33, and at 6.11 g for those under T-36. The ovarian formation percentages were 51.00% under CK, 66.67% under T-33, and 77.67% under T-36. On sex reversal, the majority of oocytes in the XX females were at stage Ⅱ under T-30, but under T-33 and T-36 in the XY females. The stage Ⅲ oocytes were found in the XX females under T-30 as well as in the XY females under T-36. Under T-33, the XY female channel catfish showed slow oval development with unclear outline and coelomic mucosa. The expression of foxl2 was upregulated and that of dmrt1 downregulated in the XY females.
      Conclusion  The physiological sex before sexual differentiation of channel catfish could be converted to female by continuous high-temperature induction.
  • [1]
    张振东, 肖友红. 美斑点叉尾鮰法案系统性回顾 [J]. 海洋与渔业, 2017(1):65−66.

    ZHANG Z D, XIAO Y H. Systematic review of channel catfish act in the United States [J]. Ocean & Fishery, 2017(1): 65−66.(in Chinese)
    [2]
    钟立强, 王明华, 陈校辉, 等. 江苏斑点叉尾鮰产业现状及发展战略思考 [J]. 中国农学通报, 2021, 37(17):137−143.

    ZHONG L Q, WANG M H, CHEN X H, et al. Current status and development strategy of the channel catfish industry in Jiangsu [J]. Chinese Agricultural Science Bulletin, 2021, 37(17): 137−143.(in Chinese)
    [3]
    DESPREZ D, MÉLARD C. Effect of ambient water temperature on sex determinism in the blue tilapia Oreochromis aureus [J]. Aquaculture, 1998, 162(1/2): 79−84.
    [4]
    陈玉红, 林丹军, 尤永隆. 泥鳅的性腺分化及温度对性腺分化的影响 [J]. 中国水产科学, 2007, 14(1):74−82.

    CHEN Y H, LIN D J, YOU Y L. Gonad differentiation in loach(Misgurnus anguillicaudatus) and the temperature effects [J]. Journal of Fishery Sciences of China, 2007, 14(1): 74−82.(in Chinese)
    [5]
    ABOZAID H, WESSELS S, HÖRSTGEN-SCHWARK G. Effect of rearing temperatures during embryonic development on the phenotypic sex in zebrafish (Danio rerio) [J]. Sexual Development, 2011, 5(5): 259−265. DOI: 10.1159/000330120
    [6]
    王浚宇. 高温和甲基睾酮联合处理对尼罗罗非鱼性别分化的影响研究[D]. 泰安: 山东农业大学, 2020.

    WANG J Y. Effects of co-treatment with high temperature and methyltestosterone on sex differentiation of Nile tilapia[D]. Taian: Shandong Agricultural University, 2020. (in Chinese)
    [7]
    KITANO T, TAKAMUNE K, KOBAYASHI T, et al. Suppression of P450 aromatase gene expression in sex-reversed males produced by rearing genetically female larvae at a high water temperature during a period of sex differentiation in the Japanese flounder (Paralichthys olivaceus) [J]. Journal of Molecular Endocrinology, 1999, 23(2): 167−176. DOI: 10.1677/jme.0.0230167
    [8]
    齐飘飘, 陈敏, 于跃, 等. 高温和皮质醇对黄颡鱼性别分化的影响 [J]. 水生生物学报, 2021, 45(1):106−117.

    QI P P, CHEN M, YU Y, et al. Effects of high temperature and cortisol on sex differentiation of yellow catfish(Tachysurus fulvidraco) [J]. Acta Hydrobiologica Sinica, 2021, 45(1): 106−117.(in Chinese)
    [9]
    CONOVER D O, KYNARD B E. Environmental sex determination: Interaction of temperature and genotype in a fish [J]. Science, 1981, 213(4507): 577−579. DOI: 10.1126/science.213.4507.577
    [10]
    孙毅. 温度对小黄鱼早期生长发育和性别分化的影响[D]. 舟山: 浙江海洋大学, 2018.

    SUN Y. Effects of temperature on early growth and sex differentiation in little yellow croaker[D]. Zhoushan: Zhejiang Ocean University, 2018. (in Chinese)
    [11]
    岳敏娟. 温度对鲫鱼性别决定的影响及分子机制探讨[D]. 福州: 福建师范大学, 2009.

    YUE M J. The study of the influence of the temperature on sex differentiation of Carassius auratus and the molecular mechnism[D]. Fuzhou: Fujian Normal University, 2009. (in Chinese)
    [12]
    张思敏, 王孝杰, 李吉方, 等. 温度对许氏平鲉性腺分化的影响及其机制 [J]. 水产学报, 2019, 43(7):1569−1580.

    ZHANG S M, WANG X J, LI J F, et al. Effects of temperature on gonadal differentiation of black rockfish (Sebastes schlegelii) and its mechanism [J]. Journal of Fisheries of China, 2019, 43(7): 1569−1580.(in Chinese)
    [13]
    程晓春. 温度对江黄颡鱼(Pseudobagrus vachelli)性分化的研究[D]. 福州: 福建师范大学, 2007.

    CHENG X C. The study of the influence of temperature on sex differentiation of teleost, Pseudobagrus vachelli[D]. Fuzhou: Fujian Normal University, 2007. (in Chinese)
    [14]
    PATIÑO R, DAVIS K B, SCHOORE J E, et al. Sex differentiation of channel catfish gonads: normal development and effects of temperature [J]. The Journal of Experimental Zoology, 1996, 276(3): 209−218.
    [15]
    ZHANG S Y, ZHANG X H, CHEN X H, et al. Construction of a high-density linkage map and QTL fine mapping for growth- and sex-related traits in channel catfish (Ictalurus punctatus) [J]. Frontiers in Genetics, 2019, 10: 251. DOI: 10.3389/fgene.2019.00251
    [16]
    牛莹月, 区又君, 蓝军南, 等. 人工培育四指马鲅鳃组织结构及其早期发育 [J]. 南方水产科学, 2020, 16(5):108−114.

    NIU Y Y, OU Y J, LAN J N, et al. Structure and early development of gill tissue in artificially cultured Eleutheronema tetradactylum [J]. South China Fisheries Science, 2020, 16(5): 108−114.(in Chinese)
    [17]
    ZHANG S Y, LI Y, SHAO J J, et al. Functional identification and characterization of IpMSTNa, a novel orthologous myostatin (MSTN) gene in channel catfish Ictalurus punctatus [J]. International Journal of Biological Macromolecules, 2020, 152: 1−10. DOI: 10.1016/j.ijbiomac.2020.02.060
    [18]
    LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402−408. DOI: 10.1006/meth.2001.1262
    [19]
    HAYASHI Y, KOBIRA H, YAMAGUCHI T, et al. High temperature causes masculinization of genetically female medaka by elevation of cortisol [J]. Molecular Reproduction and Development, 2010, 77(8): 679−686. DOI: 10.1002/mrd.21203
    [20]
    邹芝英, 杨弘, 李大宇. 罗非鱼性别决定和分化机制的研究进展 [J]. 中国水产科学, 2009, 16(1):139−145. DOI: 10.3321/j.issn:1005-8737.2009.01.020

    ZOU Z Y, YANG H, LI D Y. Research advances on sex determination and differentiation mechanism in tilapia [J]. Journal of Fishery Sciences of China, 2009, 16(1): 139−145.(in Chinese) DOI: 10.3321/j.issn:1005-8737.2009.01.020
    [21]
    HAYASAKA O, TAKEUCHI Y, SHIOZAKI K, et al. Green light irradiation during sex differentiation induces female-to-male sex reversal in the medaka Oryzias latipes [J]. Scientific Reports, 2019, 9: 2383. DOI: 10.1038/s41598-019-38908-w
    [22]
    WU R S S, ZHOU B S, RANDALL D J, et al. Aquatic hypoxia is an endocrine disruptor and impairs fish reproduction [J]. Environmental Science & Technology, 2003, 37(6): 1137−1141.
    [23]
    FRANCIS R C, BARLOW G W. Social control of primary sex differentiation in the Midas cichlid [J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(22): 10673−10675. DOI: 10.1073/pnas.90.22.10673
    [24]
    王成龙, 关文志, 李永强, 等. 17β-雌二醇诱导黄颡鱼雌性化的研究 [J]. 南方水产科学, 2020, 16(3):25−30. DOI: 10.12131/20200001

    WANG C L, GUAN W Z, LI Y Q, et al. Study on 17β-estradiol induced feminization of Pelteobagrus fulvidraco [J]. South China Fisheries Science, 2020, 16(3): 25−30.(in Chinese) DOI: 10.12131/20200001
    [25]
    王海贞, 王辉, 强俊, 等. 温度、盐度和pH对尼罗罗非鱼性别分化的影响 [J]. 应用生态学报, 2012, 23(10):2893−2899.

    WANG H Z, WANG H, QIANG J, et al. Effects of water temperature, salinity and pH on sex differentiation of Oreochromis niloticus [J]. Chinese Journal of Applied Ecology, 2012, 23(10): 2893−2899.(in Chinese)
    [26]
    CARTER A W, SADD B M, TUBERVILLE T D, et al. Short heatwaves during fluctuating incubation regimes produce females under temperature-dependent sex determination with implications for sex ratios in nature [J]. Scientific Reports, 2018, 8: 3. DOI: 10.1038/s41598-017-17708-0
    [27]
    BOWDEN R M, PAITZ R T. Temperature fluctuations and maternal estrogens as critical factors for understanding temperature-dependent sex determination in nature [J]. Journal of Experimental Zoology Part A:Ecological and Integrative Physiology, 2018, 329(4/5): 177−184.
    [28]
    陈兴汉, 刘晓春, 蒙子宁, 等. 温度调控诱导尼罗罗非鱼仔鱼雄性化的研究 [J]. 中山大学学报(自然科学版), 2013, 52(1):94−99.

    CHEN X H, LIU X C, MENG Z N, et al. Masculinization by temperature control in larvae Nile Tilapia, Oreochromis niloticus L [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013, 52(1): 94−99.(in Chinese)
    [29]
    KILLEN S S. Growth trajectory influences temperature preference in fish through an effect on metabolic rate [J]. Journal of Animal Ecology, 2014, 83(6): 1513−1522. DOI: 10.1111/1365-2656.12244
    [30]
    刘鉴毅, 宋志明, 王妤, 等. 温度对点篮子鱼幼鱼生长、摄食和消化酶活性的影响 [J]. 海洋渔业, 2015, 37(5):442−448.

    LIU J Y, SONG Z M, WANG Y, et al. Effects of water temperature on growth, feeding and activities of digestive enzymes of juvenile Siganus guttatas [J]. Marine Fisheries, 2015, 37(5): 442−448.(in Chinese)
    [31]
    HUANG S S, YE L P, CHEN H L. Sex determination and maintenance: The role of DMRT1 and FOXL2 [J]. Asian Journal of Andrology, 2017, 19(6): 619−624. DOI: 10.4103/1008-682X.194420
    [32]
    BAROILLER J F, GUIGUEN Y, FOSTIER A. Endocrine and environmental aspects of sex differentiation in fish [J]. Cellular and Molecular Life Sciences, 1999, 55(6/7): 910−931.
    [33]
    GUIGUEN Y, BAROILLER J F, RICORDEL M J, et al. Involvement of estrogens in the process of sex differentiation in two fish species: The rainbow trout (Oncorhynchus mykiss) and a tilapia (Oreochromis niloticus) [J]. Molecular Reproduction and Development, 1999, 54(2): 154−162. DOI: 10.1002/(SICI)1098-2795(199910)54:2<154::AID-MRD7>3.0.CO;2-5
    [34]
    WEBSTER K A, SCHACH U, ORDAZ A, et al. Dmrt1 is necessary for male sexual development in zebrafish [J]. Developmental Biology, 2017, 422(1): 33−46. DOI: 10.1016/j.ydbio.2016.12.008
    [35]
    GAN R H, WANG Y, LI Z, et al. Functional divergence of multiple duplicated Foxl2 homeologs and alleles in a recurrent polyploid fish [J]. Molecular Biology and Evolution, 2021, 38(5): 1995−2013. DOI: 10.1093/molbev/msab002
    [36]
    BANH Q Q T, GUPPY J L, DOMINGOS J A, et al. Induction of precocious females in the protandrous barramundi (Lates calcarifer) through implants containing 17β-estradiol - effects on gonadal morphology, gene expression and DNA methylation of key sex genes [J]. Aquaculture, 2021, 539: 736601. DOI: 10.1016/j.aquaculture.2021.736601
  • Related Articles

    [1]FANG Xiantao, YOU Qingru, WANG Hongfei, ZHENG Jianhua, CHEN Chunxia, DONG Ruixia, CHEN Shuanglong, LIAO Falian, DONG Lianfei, HUANG Tingxu. Effects of Sowing Time and Ambient Temperature after Heading on Agronomic Traits and Grain Quality/Flavonoid Content of Ziliangyou 737[J]. Fujian Journal of Agricultural Sciences, 2023, 38(7): 772-782. DOI: 10.19303/j.issn.1008-0384.2023.07.002
    [2]SUN Li, CHEN Xia, ZHENG Hanqing, WANG Zhiqing, FANG Guihua. Effect of Ambient Temperature on Growth and Development of Harmonia dimidiata Fabricius[J]. Fujian Journal of Agricultural Sciences, 2023, 38(6): 732-738. DOI: 10.19303/j.issn.1008-0384.2023.06.012
    [3]LAN Qingxiu, KE Binrong, LU Zhenghui, MA Lu, HUANG Chenyang, LIAO Jianhua. Effects of Temperature and Media on Cocultivation of Pleurotus pulmonarius and Trichoderma harzianum[J]. Fujian Journal of Agricultural Sciences, 2022, 37(2): 197-202. DOI: 10.19303/j.issn.1008-0384.2022.002.009
    [4]GENG Shubao, HOU Heli, HE Shuaijie, Liu Jiahao, WANG Guojun, YIN Jian, QIAO Li. Effect of Temperature on Life Table Parameters of Ectropis grisescens Experimental Populations[J]. Fujian Journal of Agricultural Sciences, 2021, 36(5): 572-577. DOI: 10.19303/j.issn.1008-0384.2021.05.011
    [5]CHEN Yuansheng, LI Xin, DENG Biping. Growth and Development of Leptocybe invasa as Affected by Environmental Temperature[J]. Fujian Journal of Agricultural Sciences, 2020, 35(5): 545-551. DOI: 10.19303/j.issn.1008-0384.2020.05.012
    [6]LUO Yuan-hua, Fang Neng-yan, LIN Rong-yan, Zhong Huai-qin, HUANG Min-ling. Effects of Temperature on Growth and Physiology of Oncidium[J]. Fujian Journal of Agricultural Sciences, 2018, 33(7): 702-707. DOI: 10.19303/j.issn.1008-0384.2018.07.010
    [7]LIU Bo, PAN zhi-zhen, ZHU Yu-jing, CHEN Zheng, XU Lian, LIN Ying-zhi, SHI Huai. Surface Temperature of Fermentation Bed in Hog Farms during Hot Summer Time[J]. Fujian Journal of Agricultural Sciences, 2016, 31(10): 1098-1103. DOI: 10.19303/j.issn.1008-0384.2016.10.018
    [8]LIN Lin, JIANG Bin, WU Sheng-hui, ZHANG Shi-zhong, LI Chao-sheng. The Influence of Different Temperatures and Sunlight on the Egg Hatchability of Duck Cyathocotyle caecumalis sp.nov[J]. Fujian Journal of Agricultural Sciences, 2014, 29(7): 623-627. DOI: 10.19303/j.issn.1008-0384.2014.07.003
    [9]Zhang Yanxuan, Lin Jianzheng, Wen Zikeng, Mao Daosheng, Chi Yanbin. Eftects of Temperature On Life History and Predatory Functional Response of Amblseius longispinosus(Acarina:Phytoseiidae)[J]. Fujian Journal of Agricultural Sciences, 1996, 11(1): 41-44.
    [10]Pan Linna. Respiration and Ethylene Production of Kiwifruit at Different Temperature Levels[J]. Fujian Journal of Agricultural Sciences, 1995, 10(1): 54-57.
  • Cited by

    Periodical cited type(1)

    1. 徐思琪,张世勇,王明华,刘洪岩,钟立强,陈校辉. 斑点叉尾鮰伪雌鱼卵巢发育评估及比较转录组研究. 农业生物技术学报. 2024(03): 617-627 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (594) PDF downloads (29) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return