• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
ZHANG C Y, REN W H, GENG X H, et al. Genome-wide Identification and Expressions of Banana GDSL Lipase Gene Family [J]. Fujian Journal of Agricultural Sciences,2022,37(11):1415−1429 doi: 10.19303/j.issn.1008-0384.2022.011.007
Citation: ZHANG C Y, REN W H, GENG X H, et al. Genome-wide Identification and Expressions of Banana GDSL Lipase Gene Family [J]. Fujian Journal of Agricultural Sciences,2022,37(11):1415−1429 doi: 10.19303/j.issn.1008-0384.2022.011.007

Genome-wide Identification and Expressions of Banana GDSL Lipase Gene Family

doi: 10.19303/j.issn.1008-0384.2022.011.007
  • Received Date: 2022-03-24
  • Rev Recd Date: 2022-06-14
  • Available Online: 2022-12-28
  • Publish Date: 2022-11-28
  •   Objective  Sequences and functions of banana GDSL lipase gene family (MaGDSL) were studied.   Methods  Bioinformatics was applied to identify the genomes, analyze the distributions of chromosomes, promoter cis-acting elements, and transcription factor binding sites (TFBS), and determine the physicochemical properties, gene structure, conserved motifs, and phylogenetic relationships of the encoded proteins of the MaGDSL family. Based on the transcriptome database, the expressions of MaGDSLs in the high (45 ℃)- or low temperature (4 ℃)-treated leaves, FocTR4-infested roots, and the natural or ethylene ripened fruits were measured. And qRT-PCR was employed to obtain the expressions of MaGDSL members in pollen.   Results  The banana A genome had 76 MaGDSLs of 9 subfamilies distributed on 11 chromosomes. The coding region of each member was 1014–2193 bp. Five of the members contained varied number of transcripts, but most of them had 5 exons and 4 introns. The encoded proteins had signal peptides localized mainly in the inner and outer membranes. The MaGDSLs had 3 tandem repeat clusters on chromosomes 4 and 8, 6 tandem repeat pairs on chromosomes 1, 6, 7, 8, 9, and 10, and 22 fragment repeat pairs on all except chromosome 11. The expressions of MaGDSLs in banana leaves and roots were highly variable with individual members regulated by high and low temperature stresses as well as the blast fungus. Five members (i.e., MaGDSL4-5, 8-1, 8-12, 9-4, 9-5) were repressed, but MaGDSL2-1 and MaGDSL6-8 induced, by high- or low-temperature exposure, while MaGDSL4-1 and MaGDSL11-1 regulated by low temperature and FocTR4, MaGDSL5–8 responded only to low temperature, MaGDSL2-2 and MaGLP10-5 sensitive to various treatments, and MaGDSL1-1 highly expressed in the roots and pollens.   Conclusion   MaGDSLs might play an important role in the growth and development of banana plants. Some of the members responded specifically to certain biotic and/or abiotic stresses.
  • loading
  • [1]
    ARPIGNY J L, JAEGER K E. Bacterial lipolytic enzymes: Classification and properties[J]. The Biochemical Journal, 1999, 343(Pt 1): 177-183.
    [2]
    MØLGAARD A, KAUPPINEN S, LARSEN S. Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases [J]. Structure, 2000, 8(4): 373−383. doi: 10.1016/S0969-2126(00)00118-0
    [3]
    UPTON C, BUCKLEY J T. A new family of lipolytic enzymes? [J]. Trends in Biochemical Sciences, 1995, 20(5): 178−179.[PubMed doi: 10.1016/S0968-0004(00)89002-7
    [4]
    DING L N, LI M, WANG W J, et al. Advances in plant GDSL lipases: from sequences to functional mechanisms [J]. Acta Physiologiae Plantarum, 2019, 41(9): 1−11.
    [5]
    刘梦雨, 蒋梦琦, 陈燕, 等. 龙眼GDSL酯酶/脂肪酶基因的全基因组鉴定及表达分析 [J]. 园艺学报, 2022, 49(3):597−612. doi: 10.16420/j.issn.0513-353x.2020-0942

    LIU M Y, JIANG M Q, CHEN Y, et al. Genome-wide identification and expression analysis of GDSL esterase/lipase genes in Dimocarpus longan [J]. Acta Horticulturae Sinica, 2022, 49(3): 597−612.(in Chinese) doi: 10.16420/j.issn.0513-353x.2020-0942
    [6]
    田娜, 刘范, 伍俊为, 等. 香蕉GRF基因家族的全基因组鉴定及表达分析 [J]. 果树学报, 2020, 37(12):1821−1835. doi: 10.13925/j.cnki.gsxb.20200226

    TIAN N, LIU F, WU J W, et al. Genome-wide identification and expression analysis of GRF gene family in banana [J]. Journal of Fruit Science, 2020, 37(12): 1821−1835.(in Chinese) doi: 10.13925/j.cnki.gsxb.20200226
    [7]
    LING H. Sequence analysis of GDSL lipase gene family in Arabidopsis thaliana [J]. Pakistan Journal of Biological Sciences:PJBS, 2008, 11(5): 763−767. doi: 10.3923/pjbs.2008.763.767
    [8]
    CHEPYSHKO H, LAI C P, HUANG L M, et al. Multifunctionality and diversity of GDSL esterase/lipase gene family in rice (Oryza sativa L. japonica) genome: New insights from bioinformatics analysis [J]. BMC Genomics, 2012, 13: 309. doi: 10.1186/1471-2164-13-309
    [9]
    REN R S, YANG X P, XU J H, et al. Genome-wide identification and analysis of GDSL-type esterases/lipases in watermelon (Citrullus lanatus) [J]. Scientia Horticulturae, 2021, 289: 110461. doi: 10.1016/j.scienta.2021.110461
    [10]
    VOLOKITA M, ROSILIO-BRAMI T, RIVKIN N, et al. Combining comparative sequence and genomic data to ascertain phylogenetic relationships and explore the evolution of the large GDSL-lipase family in land plants [J]. Molecular Biology and Evolution, 2010, 28(1): 551−565.
    [11]
    UPDEGRAFF E P, ZHAO F, PREUSS D. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen [J]. Sexual Plant Reproduction, 2009, 22(3): 197−204. doi: 10.1007/s00497-009-0104-5
    [12]
    HUANG L M, LAI C P, CHEN L F O, et al. Arabidopsis SFAR4 is a novel GDSL-type esterase involved in fatty acid degradation and glucose tolerance [J]. Botanical Studies, 2015, 56(1): 33. doi: 10.1186/s40529-015-0114-6
    [13]
    WELTI R, LI W Q, LI M Y, et al. Profiling membrane lipids in plant stress responses. Role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis [J]. The Journal of Biological Chemistry, 2002, 277(35): 31994−32002. doi: 10.1074/jbc.M205375200
    [14]
    HONG J K, CHOI H W, HWANG I S, et al. Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance [J]. Planta, 2008, 227(3): 539−558. doi: 10.1007/s00425-007-0637-5
    [15]
    GAO M J, YIN X, YANG W B, et al. GDSL lipases modulate immunity through lipid homeostasis in rice [J]. PLoS Pathogens, 2017, 13(11): e1006724. doi: 10.1371/journal.ppat.1006724
    [16]
    MAYFIELD J A, FIEBIG A, JOHNSTONE S E, et al. Gene families from the Arabidopsis thaliana pollen coat proteome [J]. Science, 2001, 292(5526): 2482−2485. doi: 10.1126/science.1060972
    [17]
    OH I S, PARK A R, BAE M S, et al. Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola [J]. The Plant Cell, 2005, 17(10): 2832−2847. doi: 10.1105/tpc.105.034819
    [18]
    CLAU K, BAUMERT A, NIMTZ M, et al. Role of a GDSL lipase-like protein as sinapine esterase in Brassicaceae [J]. The Plant Journal, 2008, 53(5): 802−813. doi: 10.1111/j.1365-313X.2007.03374.x
    [19]
    NARANJO M A, FORMENT J, ROLDÁN M, et al. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants [J]. Plant, Cell & Environment, 2006, 29(10): 1890−1900.
    [20]
    D’HONT A, DENOEUD F, AURY J M, et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants [J]. Nature, 2012, 488(7410): 213−217. doi: 10.1038/nature11241
    [21]
    刘范, 田娜, 孙雪丽, 等. 香蕉GLP基因家族全基因组鉴定及表达分析 [J]. 园艺学报, 2020, 47(10):1930−1946. doi: 10.16420/j.issn.0513-353x.2019-0983

    LIU F, TIAN N, SUN X L, et al. Genome-wide identification and expression analysis of banana GLP gene family [J]. Acta Horticulturae Sinica, 2020, 47(10): 1930−1946.(in Chinese) doi: 10.16420/j.issn.0513-353x.2019-0983
    [22]
    CHEN C J, CHEN H, ZHANG Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
    [23]
    TAKAHASHI K, SHIMADA T, KONDO M, et al. Ectopic expression of an esterase, which is a candidate for the unidentified plant cutinase, causes cuticular defects in Arabidopsis thaliana [J]. Plant and Cell Physiology, 2010, 51(1): 123−131. doi: 10.1093/pcp/pcp173
    [24]
    LING H, ZHAO J Y, ZUO K J, et al. Isolation and expression analysis of a GDSL-like lipase gene from Brassica napus L [J]. Journal of Biochemistry and Molecular Biology, 2006, 39(3): 297−303.
    [25]
    CANNON S B, MITRA A, BAUMGARTEN A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J]. BMC Plant Biology, 2004, 4: 10. doi: 10.1186/1471-2229-4-10
    [26]
    ROY S W, PENNY D. Patterns of intron loss and gain in plants: Intron loss-dominated evolution and genome-wide comparison of O. sativa andA. thaliana [J]. Molecular Biology and Evolution, 2007, 24(1): 171−181.
    [27]
    李田, 孙景宽, 刘京涛. 植物启动子研究进展 [J]. 生物技术通报, 2015, 31(2):18−25. doi: 10.13560/j.cnki.biotech.bull.1985.2015.02.003

    LI T, SUN J K, LIU J T. Research advances on plant promoter [J]. Biotechnology Bulletin, 2015, 31(2): 18−25.(in Chinese) doi: 10.13560/j.cnki.biotech.bull.1985.2015.02.003
    [28]
    李君霞, 代书桃, 陈宇翔, 等. MYB转录因子在植物抗旱基因工程中的应用进展 [J]. 河南农业科学, 2020, 49(11):1−9. doi: 10.15933/j.cnki.1004-3268.2020.11.001

    LI J X, DAI S T, CHEN Y X, et al. Progress on application of MYB transcription factor in plant drought tolerance genetic engineering [J]. Journal of Henan Agricultural Sciences, 2020, 49(11): 1−9.(in Chinese) doi: 10.15933/j.cnki.1004-3268.2020.11.001
    [29]
    ROMBOLÁ-CALDENTEY B, RUEDA-ROMERO P, IGLESIAS-FERNÁNDEZ R, et al. Arabidopsis DELLA and two HD-ZIP transcription factors regulate GA signaling in the epidermis through the L1 box cis-element [J]. The Plant Cell, 2014, 26(7): 2905−2919. doi: 10.1105/tpc.114.127647
    [30]
    CHEN M X, DU X, ZHU Y, et al. Seed fatty acid reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis [J]. Plant, Cell & Environment, 2012, 35(12): 2155−2169.
    [31]
    RIEMANN M, GUTJAHR C, KORTE A, et al. GER1, a GDSL motif-encoding gene from rice is a novel early light- and jasmonate-induced gene [J]. Plant Biology (Stuttgart, Germany), 2007, 9(1): 32−40. doi: 10.1055/s-2006-924561
    [32]
    AKOH C C, LEE G C, LIAW Y C, et al. GDSL family of serine esterases/lipases [J]. Progress in Lipid Research, 2004, 43(6): 534−552. doi: 10.1016/j.plipres.2004.09.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (420) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return