• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
YU R Q, WANG F X, ZHENG Y M, et al. Research Advances on the Biological Function of Raffinose Families Oligosaccharides in Seed Vigor and Abiotic Stress [J]. Fujian Journal of Agricultural Sciences,2022,37(1):114−122 doi: 10.19303/j.issn.1008-0384.2022.01.015
Citation: YU R Q, WANG F X, ZHENG Y M, et al. Research Advances on the Biological Function of Raffinose Families Oligosaccharides in Seed Vigor and Abiotic Stress [J]. Fujian Journal of Agricultural Sciences,2022,37(1):114−122 doi: 10.19303/j.issn.1008-0384.2022.01.015

Research Advances on the Biological Function of Raffinose Families Oligosaccharides in Seed Vigor and Abiotic Stress

doi: 10.19303/j.issn.1008-0384.2022.01.015
  • Received Date: 2021-12-01
  • Rev Recd Date: 2022-01-10
  • Available Online: 2022-02-07
  • Publish Date: 2022-01-28
  • Abiotic stress on plant growth and loss of seed vigor during seed storage are two difficult problems for agricultural production. Raffinose family oligosaccharide (RFOs), a soluble oligosaccharide, widely exsist in plants, the metabolites of which can participate in plant resistance to abiotic stress through various pathways and regulation of seed vigor. However, the regulatory pathways and molecular mechanisms of RFOs under different stresses are still not clear. Thus, analysis of the biological function of RFOs has practical significance and application value for improving crop economic traits and yield by using RFOs pathway. In this review, the synthesis and catabolic pathways of RFOs were expounded, and the recent research progress of RFOs in seed vigor, abiotic stress, especially drought stress and cold stress was summarized; the lack of mechanism study of RFOs metabolism were discussed, and the future research directions for RFOs metabolism were prospected.
  • loading
  • [1]
    CASTILLO E M, DE LUMEN B O, REYES P S, et al. Raffinose synthase and galactinol synthase in developing seeds and leaves of legumes [J]. Journal of Agricultural and Food Chemistry, 1990, 38(2): 351−355. doi: 10.1021/jf00092a003
    [2]
    LI H W, ZANG B S, DENG X W, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice [J]. Planta, 2011, 234(5): 1007−1018. doi: 10.1007/s00425-011-1458-0
    [3]
    DOS SANTOS T B, BUDZINSKI I G F, MARUR C J, et al. Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses [J]. Plant Physiology and Biochemistry, 2011, 49(4): 441−448. doi: 10.1016/j.plaphy.2011.01.023
    [4]
    TAJI T, OHSUMI C, IUCHI S, et al. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana [J]. The Plant Journal, 2002, 29(4): 417−426. doi: 10.1046/j.0960-7412.2001.01227.x
    [5]
    HORBOWICZ M, OBENDORF R L. Seed desiccation tolerance and storability: Dependence on flatulence-producing oligosaccharides and cyclitols—review and survey [J]. Seed Science Research, 1994, 4(4): 385−405. doi: 10.1017/S0960258500002440
    [6]
    SENGUPTA S, MUKHERJEE S, PARWEEN S, et al. Galactinol synthase across evolutionary diverse taxa: Functional preference for higher plants? [J]. FEBS Letters, 2012, 586(10): 1488−1496. doi: 10.1016/j.febslet.2012.04.003
    [7]
    LOEWUS F A, MURTHY P P N. Myo-Inositol metabolism in plants [J]. Plant Science, 2000, 150(1): 1−19. doi: 10.1016/S0168-9452(99)00150-8
    [8]
    JANEČEK S, LANTA V, KLIMEŠOVÁ J, et al. Effect of abandonment and plant classification on carbohydrate reserves of meadow plants [J]. Plant Biology (Stuttgart, Germany), 2011, 13(2): 243−251. doi: 10.1111/j.1438-8677.2010.00352.x
    [9]
    KUO T M, VANMIDDLESWORTH J F, WOLF W J. Content of raffinose oligosaccharides and sucrose in various plant seeds [J]. Journal of Agricultural and Food Chemistry, 1988, 36(1): 32−36. doi: 10.1021/jf00079a008
    [10]
    IFTIME D, HANNAH M A, PETERBAUER T, et al. Stachyose in the cytosol does not influence freezing tolerance of transgenic Arabidopsis expressing stachyose synthase from adzuki bean [J]. Plant Science, 2011, 180(1): 24−30. doi: 10.1016/j.plantsci.2010.07.012
    [11]
    BLÖCHL A, MARCH G G D, SOURDIOUX M, et al. Induction of raffinose oligosaccharide biosynthesis by abscisic acid in somatic embryos of alfalfa (Medicago sativa L. ) [J]. Plant Science, 2005, 168(4): 1075−1082. doi: 10.1016/j.plantsci.2004.12.004
    [12]
    PETERS S, KELLER F. Frost tolerance in excised leaves of the common bugle (Ajuga reptans L. ) correlates positively with the concentrations of raffinose family oligosaccharides (RFOs) [J]. Plant, Cell & Environment, 2009, 32(8): 1099−1107.
    [13]
    从青, 程龙军, 杨宁. 植物肌醇半乳糖苷合酶的生理功能和调控机制 [J]. 中国生物化学与分子生物学报, 2019, 35(11):1193−1200.

    CONG Q, CHENG L J, YANG N. Physiological function and regulation mechanism of galactinol synthase in plants [J]. Chinese Journal of Biochemistry and Molecular Biology, 2019, 35(11): 1193−1200.(in Chinese)
    [14]
    李涛. 棉子糖系列寡糖(RFOs)在玉米与拟南芥植株抗旱及种子活力中的功能研究[D]. 杨凌: 西北农林科技大学, 2017.

    LI T. The function of raffinose family oligosaccharides in plant drought stress tolerance and seed vigor of maize and Arabidopsis[D]. Yangling: Northwest A & F University, 2017. (in Chinese)
    [15]
    ZHOU M L, ZHANG Q, ZHOU M, et al. Genome-wide identification of genes involved in raffinose metabolism in Maize [J]. Glycobiology, 2012, 22(12): 1775−1785. doi: 10.1093/glycob/cws121
    [16]
    ZHOU T, ZHANG R, GUO S D. Molecular cloning and characterization of GhGolS1, a novel gene encoding galactinol synthase from cotton (Gossypium hirsutum) [J]. Plant Molecular Biology Reporter, 2012, 30(3): 699−709. doi: 10.1007/s11105-011-0375-5
    [17]
    BLÖCHL A, PETERBAUER T, HOFMANN J, et al. Enzymatic breakdown of raffinose oligosaccharides in pea seeds [J]. Planta, 2008, 228(1): 99−110. doi: 10.1007/s00425-008-0722-4
    [18]
    CARMI N, ZHANG G, PETREIKOV M, et al. Cloning and functional expression of alkaline alpha-galactosidase from melon fruit: Similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases [J]. The Plant Journal, 2003, 33(1): 97−106. doi: 10.1046/j.1365-313X.2003.01609.x
    [19]
    HUA B, ZHANG M Y, ZHANG J J, et al. CsAGA1 and CsAGA2 mediate RFO hydrolysis in partially distinct manner in cucumber fruits [J]. International Journal of Molecular Sciences, 2021, 22(24): 13285. doi: 10.3390/ijms222413285
    [20]
    ZHANG Y M, LI D, DIRK L M A, et al. ZmAGA1 hydrolyzes RFOs late during the lag phase of seed germination, shifting sugar metabolism toward seed germination over seed aging tolerance [J]. Journal of Agricultural and Food Chemistry, 2021, 69(39): 11606−11615. doi: 10.1021/acs.jafc.1c03677
    [21]
    LEPRINCE O, PELLIZZARO A, BERRIRI S, et al. Late seed maturation: Drying without dying [J]. Journal of Experimental Botany, 2017, 68(4): 827−841.
    [22]
    SMITH S E, FAIRBANKS D J. Effects of pollination method on strain cross yield in lucerne [J]. Plant Breeding, 1989, 102(1): 79−82. doi: 10.1111/j.1439-0523.1989.tb00318.x
    [23]
    LOWELL C A, KUO T M. Oligosaccharide metabolism and accumulation in developing soybean seeds [J]. Crop Science, 1989, 29(2): 459. doi: 10.2135/cropsci1989.0011183X002900020044x
    [24]
    CLERKX E J M, EL-LITHY M E, VIERLING E, et al. Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and shakdara, using a new recombinant inbred line population [J]. Plant Physiology, 2004, 135(1): 432−443. doi: 10.1104/pp.103.036814
    [25]
    SATTLER S E, GILLILAND L U, MAGALLANES-LUNDBACK M, et al. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination [J]. The Plant Cell, 2004, 16(6): 1419−1432. doi: 10.1105/tpc.021360
    [26]
    KALEMBA E M, PUKACKA A. Possible roles of LEA proteins and sHSPs in seed protection: A short review [J]. Biological Letters, 2007, 44(1): 3−16.
    [27]
    KOSTER K L, LEOPOLD A C. Sugars and desiccation tolerance in seeds [J]. Plant Physiology, 1988, 88(3): 829−832. doi: 10.1104/pp.88.3.829
    [28]
    ZHAO T Y, MARTIN D, MEELEY R B, et al. Expression of the maize GALACTINOL SYNTHASE gene family: (II) Kernel abscission, environmental stress and myo-inositol influences accumulation of transcript in developing seeds and callus cells [J]. Physiologia Plantarum, 2004, 121(4): 647−655. doi: 10.1111/j.1399-3054.2004.00368.x
    [29]
    JING Y, LANG S R, WANG D M, et al. Functional characterization of galactinol synthase and raffinose synthase in desiccation tolerance acquisition in developing Arabidopsis seeds [J]. Journal of Plant Physiology, 2018, 230: 109−121. doi: 10.1016/j.jplph.2018.10.011
    [30]
    LI T, ZHANG Y M, WANG D, et al. Regulation of seed vigor by manipulation of raffinose family oligosaccharides in maize and Arabidopsis thaliana [J]. Molecular Plant, 2017, 10(12): 1540−1555. doi: 10.1016/j.molp.2017.10.014
    [31]
    VANDECASTEELE C, TEULAT-MERAH B, MORÈRE-LE PAVEN M C, et al. Quantitative trait loci analysis reveals a correlation between the ratio of sucrose/raffinose family oligosaccharides and seed vigour in Medicago truncatula [J]. Plant, Cell & Environment, 2011, 34(9): 1473−1487.
    [32]
    LI X, ZHUO J J, JING Y, et al. Expression of a GALACTINOL SYNTHASE gene is positively associated with desiccation tolerance of Brassica napus seeds during development [J]. Journal of Plant Physiology, 2011, 168(15): 1761−1770. doi: 10.1016/j.jplph.2011.04.006
    [33]
    BLACKIG M, CORBINEAU F, GRZESIKIT M, et al. Carbohydrate metabolism in the developing and maturing wheat embryo in relation to its desiccation tolerance [J]. Journal of Experimental Botany, 1996, 47(2): 161−169. doi: 10.1093/jxb/47.2.161
    [34]
    DE SOUZA VIDIGAL D, WILLEMS L, VAN ARKEL J, et al. Galactinol as marker for seed longevity [J]. Plant Science, 2016, 246: 112−118. doi: 10.1016/j.plantsci.2016.02.015
    [35]
    GANGL R, TENHAKEN R. Raffinose family oligosaccharides act as galactose stores in seeds and are required for rapid germination of Arabidopsis in the dark [J]. Frontiers in Plant Science, 2016, 7: 1115.
    [36]
    ARUNRAJ R, SKORI L, KUMAR A, et al. Spatial regulation of alpha-galactosidase activity and its influence on raffinose family oligosaccharides during seed maturation and germination in Cicer arietinum [J]. Plant Signaling & Behavior, 2020, 15(8): 1709707.
    [37]
    DIERKING E C, BILYEU K D. Raffinose and stachyose metabolism are not required for efficient soybean seed germination [J]. Journal of Plant Physiology, 2009, 166(12): 1329−1335. doi: 10.1016/j.jplph.2009.01.008
    [38]
    JOSHI J, HASNAIN G, LOGUE T, et al. A core metabolome response of maize leaves subjected to long-duration abiotic stresses [J]. Metabolites, 2021, 11(11): 797. doi: 10.3390/metabo11110797
    [39]
    GUO Q Q, LI X, NIU L, et al. Transcription-associated metabolomic adjustments in maize occur during combined drought and cold stress [J]. Plant Physiology, 2021, 186(1): 677−695. doi: 10.1093/plphys/kiab050
    [40]
    LEE C, CHUNG C T, HONG W J, et al. Transcriptional changes in the developing rice seeds under salt stress suggest targets for manipulating seed quality [J]. Frontiers in Plant Science, 2021, 12: 748273. doi: 10.3389/fpls.2021.748273
    [41]
    MA S, LV J G, LI X, et al. Galactinol synthase gene 4 (CsGolS4) increases cold and drought tolerance in Cucumis sativus L. by inducing RFO accumulation and ROS scavenging [J]. Environmental and Experimental Botany, 2021, 185: 104406. doi: 10.1016/j.envexpbot.2021.104406
    [42]
    CACELA C, HINCHA D K. Monosaccharide composition, chain length and linkage type influence the interactions of oligosaccharides with dry phosphatidylcholine membranes [J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2006, 1758(5): 680−691. doi: 10.1016/j.bbamem.2006.04.005
    [43]
    SCHNEIDER T, KELLER F. Raffinose in chloroplasts is synthesized in the cytosol and transported across the chloroplast envelope [J]. Plant and Cell Physiology, 2009, 50(12): 2174−2182. doi: 10.1093/pcp/pcp151
    [44]
    NISHIZAWA A, YABUTA Y, SHIGEOKA S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage [J]. Plant Physiology, 2008, 147(3): 1251−1263. doi: 10.1104/pp.108.122465
    [45]
    PETERS S, MUNDREE S G, THOMSON J A, et al. Protection mechanisms in the resurrection plant Xerophyta viscosa (Baker): Both sucrose and raffinose family oligosaccharides (RFOs) accumulate in leaves in response to water deficit [J]. Journal of Experimental Botany, 2007, 58(8): 1947−1956. doi: 10.1093/jxb/erm056
    [46]
    EGERT A, EICHER B, KELLER F, et al. Evidence for water deficit-induced mass increases of raffinose family oligosaccharides (RFOs) in the leaves of three Craterostigma resurrection plant species [J]. Frontiers in Physiology, 2015, 6: 206.
    [47]
    LIANG Y C, WEI G F, NING K, et al. Increase in carbohydrate content and variation in microbiome are related to the drought tolerance of Codonopsis pilosula [J]. Plant Physiology and Biochemistry, 2021, 165: 19−35. doi: 10.1016/j.plaphy.2021.05.004
    [48]
    GU L, ZHANG Y M, ZHANG M S, et al. ZmGOLS2, a target of transcription factor ZmDREB2A, offers similar protection against abiotic stress as ZmDREB2A [J]. Plant Molecular Biology, 2016, 90(1/2): 157−170.
    [49]
    范洁. 木薯肌醇半乳糖苷合成酶基因MeGolS5的抗旱功能研究[D]. 海口: 海南大学, 2015.

    FAN J. Functional characterization involved in drought stress of galactinol synthase gene MeGolS5 from Manihot esculenta crantz[D]. Haikou: Hainan University, 2015. (in Chinese)
    [50]
    EGERT A, KELLER F, PETERS S. Abiotic stress-induced accumulation of raffinose in Arabidopsis leaves is mediated by a single raffinose synthase (RS5, At5g40390) [J]. BMC Plant Biology, 2013, 13: 218. doi: 10.1186/1471-2229-13-218
    [51]
    GANGL R, BEHMÜLLER R, TENHAKEN R. Molecular cloning of AtRS4, a seed specific multifunctional RFO synthase/ galactosylhydrolase in Arabidopsis thaliana [J ]. Frontiers in Plant Science , 2015 , 6 : 789.
    [52]
    LI T, ZHANG Y M, LIU Y, et al. Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and Arabidopsis plants [J]. Journal of Biological Chemistry, 2020, 295(23): 8064−8077. doi: 10.1074/jbc.RA120.013948
    [53]
    QIU S, ZHANG J, HE J Q, et al. Overexpression of GmGolS2-1, a soybean galactinol synthase gene, enhances transgenic tobacco drought tolerance [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2020, 143(3): 507−516. doi: 10.1007/s11240-020-01936-w
    [54]
    SALVI P, KAMBLE N U, MAJEE M. Ectopic over-expression of ABA-responsive Chickpea galactinol synthase (CaGolS) gene results in improved tolerance to dehydration stress by modulating ROS scavenging [J]. Environmental and Experimental Botany, 2020, 171: 103957. doi: 10.1016/j.envexpbot.2019.103957
    [55]
    刘爱丽, 魏梦园, 黎冬华, 等. 芝麻肌醇半乳糖苷合成酶基因SiGolS6的克隆及功能分析 [J]. 中国农业科学, 2020, 53(17):3432−3442. doi: 10.3864/j.issn.0578-1752.2020.17.002

    LIU A L, WEI M Y, LI D H, et al. Cloning and function analysis of sesame galactinol synthase gene SiGolS6 in Arabidopsis [J]. Scientia Agricultura Sinica, 2020, 53(17): 3432−3442.(in Chinese) doi: 10.3864/j.issn.0578-1752.2020.17.002
    [56]
    LÜ J, SUI X L, MA S, et al. Suppression of cucumber stachyose synthase gene (CsSTS) inhibits phloem loading and reduces low temperature stress tolerance [J]. Plant Molecular Biology, 2017, 95(1/2): 1−15.
    [57]
    STRAND, FOYER C H, GUSTAFSSON P, et al. Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance [J]. Plant, Cell & Environment, 2003, 26(4): 523−535.
    [58]
    PENNYCOOKE J C, JONES M L, STUSHNOFF C. Down-regulating alpha-galactosidase enhances freezing tolerance in transgenic Petunia [J]. Plant Physiology, 2003, 133(2): 901−909. doi: 10.1104/pp.103.024554
    [59]
    KELLER I, MÜDSAM C, RODRIGUES C M, et al. Cold-triggered induction of ROS- and raffinose-related metabolism in freezing-sensitive taproot tissue of sugar beet[J]. Frontiers in Plant Science, 2021,DOI: 10.1101/2021.04.12.439442.
    [60]
    SUN X M, MATUS J T, WONG D C J, et al. The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides [J]. Journal of Experimental Botany, 2018, 69(7): 1749−1764. doi: 10.1093/jxb/ery020
    [61]
    ZHUO C L, WANG T, LU S Y, et al. A cold responsive galactinol synthase gene from Medicago falcata (MfGolS1) is induced by myo-inositol and confers multiple tolerances to abiotic stresses [J]. Physiologia Plantarum, 2013, 149(1): 67−78. doi: 10.1111/ppl.12019
    [62]
    GILMOUR S J, SEBOLT A M, SALAZAR M P, et al. Overexpression of the Arabidopsis CBF3Transcriptional activator mimics multiple biochemical changes associated with cold acclimation [J]. Plant Physiology, 2000, 124(4): 1854−1865. doi: 10.1104/pp.124.4.1854
    [63]
    SHIMOSAKA E, OZAWA K. Overexpression of cold-inducible wheat galactinol synthase confers tolerance to chilling stress in transgenic rice [J]. Breeding Science, 2015, 65(5): 363−371. doi: 10.1270/jsbbs.65.363
    [64]
    LIU Y D, ZHANG L, MENG S D, et al. Expression of galactinol synthase from Ammopiptanthus nanus in tomato improves tolerance to cold stress [J]. Journal of Experimental Botany, 2019, 71(1): 435−449.
    [65]
    GU H, LU M, ZHANG Z P, et al. Metabolic process of raffinose family oligosaccharides during cold stress and recovery in cucumber leaves [J]. Journal of Plant Physiology, 2018, 224/225: 112−120. doi: 10.1016/j.jplph.2018.03.012
    [66]
    KNAUPP M, MISHRA K B, NEDBAL L, et al. Evidence for a role of raffinose in stabilizing photosystem II during freeze-thaw cycles [J]. Planta, 2011, 234(3): 477−486. doi: 10.1007/s00425-011-1413-0
    [67]
    HAN Q H, QI J L, HAO G L, et al. ZmDREB1A regulates RAFFINOSE SYNTHASE controlling raffinose accumulation and plant chilling stress tolerance in maize [J]. Plant and Cell Physiology, 2019, 61(2): 331−341.
    [68]
    FOYER C H, SHIGEOKA S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis [J]. Plant Physiology, 2010, 155(1): 93−100.
    [69]
    CUI L H, BYUN M Y, OH H G, et al. Poaceae type II galactinol synthase 2 from Antarctic flowering plant Deschampsia antarctica and rice improves cold and drought tolerance by accumulation of raffinose family oligosaccharides in transgenic rice plants [J]. Plant and Cell Physiology, 2019, 61(1): 88−104.
    [70]
    WANG D H, YAO W, SONG Y, et al. Molecular characterization and expression of three galactinol synthase genes that confer stress tolerance in Salvia miltiorrhiza [J]. Journal of Plant Physiology, 2012, 169(18): 1838−1848. doi: 10.1016/j.jplph.2012.07.015
    [71]
    ZHANG J, SONG G S, MEI Y J, et al. Present status on removal of raff inose family oligosaccharides–a Review [J]. Czech Journal of Food Sciences, 2019, 37(3): 141−154. doi: 10.17221/472/2016-CJFS
    [72]
    YANG W X, ZHANG Y H, ZHOU X J, et al. Production of a highly protease-resistant fungal α-galactosidase in transgenic maize seeds for simplified feed processing [J]. PLoS One, 2015, 10(6): e0129294. doi: 10.1371/journal.pone.0129294
    [73]
    LE H, NGUYEN N H, TA D T, et al. CRISPR/Cas9-mediated knockout of galactinol synthase-encoding genes reduces raffinose family oligosaccharide levels in soybean seeds [J]. Frontiers in Plant Science, 2020, 11: 612942. doi: 10.3389/fpls.2020.612942
    [74]
    VALENTINE M F, DE TAR J R, MOOKKAN M, et al. Silencing of soybean raffinose synthase gene reduced raffinose family oligosaccharides and increased true metabolizable energy of poultry feed [J]. Frontiers in Plant Science, 2017, 8: 692. doi: 10.3389/fpls.2017.00692
    [75]
    MAO B Y, TANG H Y, GU J Y, et al. In vitro fermentation of raffinose by the human gut bacteria [J]. Food & Function, 2018, 9(11): 5824−5831.
    [76]
    PACIFICI S, SONG J, ZHANG C, et al. Intra amniotic administration of raffinose and stachyose affects the intestinal brush border functionality and alters gut microflora populations [J]. Nutrients, 2017, 9(3): 304. doi: 10.3390/nu9030304
    [77]
    郑建仙, 耿立萍. 功能性低聚糖析论 [J]. 食品与发酵工业, 1997, 23(1):39−46. doi: 10.3321/j.issn:0253-990X.1997.01.008

    ZHENG J X, GENG L P. Analysis of functional oligosaccharides [J]. Food and Fermentation Industries, 1997, 23(1): 39−46.(in Chinese) doi: 10.3321/j.issn:0253-990X.1997.01.008
    [78]
    SPRENGER N, KELLER F. Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: The roles of two distinct galactinol synthases [J]. The Plant Journal:for Cell and Molecular Biology, 2000, 21(3): 249−258. doi: 10.1046/j.1365-313x.2000.00671.x
    [79]
    KELLER I, RODRIGUES C M, NEUHAUS H E, et al. Improved resource allocation and stabilization of yield under abiotic stress [J]. Journal of Plant Physiology, 2021, 257: 153336. doi: 10.1016/j.jplph.2020.153336
    [80]
    MA S, LI Y X, LI X, et al. Phloem unloading strategies and mechanisms in crop fruits [J]. Journal of Plant Growth Regulation, 2019, 38(2): 494−500. doi: 10.1007/s00344-018-9864-1
    [81]
    MA S, SUN L, SUI X, et al. Phloem loading in cucumber: Combined symplastic and apoplastic strategies [J]. The Plant Journal, 2019, 98(3): 391−404. doi: 10.1111/tpj.14224
    [82]
    KIM M S, CHO S M, KANG E Y, et al. Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization [J]. Molecular Plant-Microbe Interactions:MPMI, 2008, 21(12): 1643−1653. doi: 10.1094/MPMI-21-12-1643
    [83]
    WANG Z, ZHU Y, WANG L L, et al. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter [J]. Planta, 2009, 230(6): 1155−1166. doi: 10.1007/s00425-009-1014-3
    [84]
    WU X L, KISHITANI S, ITO Y, et al. Accumulation of raffinose in rice seedlings overexpressing OsWRKY11 in relation to desiccation tolerance [J]. Plant Biotechnology, 2009, 26(4): 431−434. doi: 10.5511/plantbiotechnology.26.431
    [85]
    CORBESIER L, VINCENT C, JANG S, et al. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis [J]. Science, 2007, 316(5827): 1030−1033. doi: 10.1126/science.1141752
    [86]
    CHEN Q G, PAYYAVULA R S, CHEN L, et al. FLOWERING LOCUS T mRNA is synthesized in specialized companion cells in Arabidopsis and Maryland Mammoth tobacco leaf veins [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(11): 2830−2835. doi: 10.1073/pnas.1719455115
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (1220) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return