Citation: | LI Y, LIU B T, LAI S H, et al. Cloning and Expression of DcbHLH14 from Dendrobium catenatum Lindl. [J]. Fujian Journal of Agricultural Sciences,2022,37(9):1145−1155 doi: 10.19303/j.issn.1008-0384.2022.009.005 |
[1] |
蔡琳, 彭鹏. 名贵中药铁皮石斛化学成分及其药理作用浅述 [J]. 安徽化工, 2021, 47(1):24−25. doi: 10.3969/j.issn.1008-553X.2021.01.008
CAI L, PENG P. A brief introduction on the chemical constituents and pharmacological action of rare Chinese medicine Dendrobium officinale [J]. Anhui Chemical Industry, 2021, 47(1): 24−25.(in Chinese) doi: 10.3969/j.issn.1008-553X.2021.01.008
|
[2] |
黄嘉雯, 陈小阳, 刘涛利, 等. 花色素苷合成关键调节基因的研究进展 [J]. 分子植物育种, 2019, 17(11):3602−3608. doi: 10.13271/j.mpb.017.003602
HUANG J W, CHEN X Y, LIU T L, et al. Research progress of the key regulatory genes for anthocyanin synthesis [J]. Molecular Plant Breeding, 2019, 17(11): 3602−3608.(in Chinese) doi: 10.13271/j.mpb.017.003602
|
[3] |
王力伟, 房永雨, 刘红葵, 等. bHLH转录因子的研究进展 [J]. 畜牧与饲料科学, 2020, 41(1):23−27. doi: 10.12160/j.issn.1672-5190.2020.01.005
WANG L W, FANG Y Y, LIU H K, et al. Research progress of bHLH transcription factors [J]. Animal Husbandry and Feed Science, 2020, 41(1): 23−27.(in Chinese) doi: 10.12160/j.issn.1672-5190.2020.01.005
|
[4] |
陈清, 汤浩茹, 董晓莉, 等. 植物Myb转录因子的研究进展 [J]. 基因组学与应用生物学, 2009, 28(2):365−372.
CHEN Q, TANG H R, DONG X L, et al. Progress in the study of plant myb transcription factors [J]. Genomics and Applied Biology, 2009, 28(2): 365−372.(in Chinese)
|
[5] |
AMOUTZIAS G, VERON A, WEINER J, et al. One billion years of bZIP transcription factor evolution: Conservation and change in dimerization and DNA-binding site specificity [J]. Molecular Biology and Evolution, 2006, 24(3): 827−835. doi: 10.1093/molbev/msl211
|
[6] |
覃超. 甜瓜CmbHLH93和CmbHLH130基因在果实发育中的作用[D]. 呼和浩特: 内蒙古大学, 2020: 84-86.
QIN C. The role of CmbHLH93 and CmbHLH130 in fruit development of melon[D]. Hohhot: Inner Mongolia University, 2020: 84-86. (in Chinese)
|
[7] |
张娇. 两个bHLH转录因子(AtLPl和AtLP2)在拟南芥细胞伸长生长中的功能研究[D]. 武汉: 华中师范大学, 2019: 28-29.
ZHANG J. Study on the roles of two bHLH transcription factors(AtLPl and AtLP2)in cell elongation of Arabidopsis thaliana[D]. Wuhan: Central China Normal University, 2019: 28-29. (in Chinese)
|
[8] |
LIU Y, LI X, LI K, et al. Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis [J]. PLoS Genetics, 2013, 9(10): e1003861. doi: 10.1371/journal.pgen.1003861
|
[9] |
宋建辉. bHLH113调控拟南芥开花和花青素合成的分子机制研究[D]. 杭州: 浙江农林大学, 2020.
SONG J H. The molecular regulatory mechanism of flowering and anthocyanin by bHLH113 in Arabidopsis[D]. Hangzhou: Zhejiang A & F University, 2020. (in Chinese)
|
[10] |
WU H H, REN Z Y, ZHENG L, et al. The bHLH transcription factor GhPAS1 mediates BR signaling to regulate plant development and architecture in cotton [J]. The Crop Journal, 2021, 9(5): 1049−1059. doi: 10.1016/j.cj.2020.10.014
|
[11] |
ZHANG J H, LV H Z, LIU W J, et al. bHLH transcription factor SmbHLH92 negatively regulates biosynthesis of phenolic acids and tanshinones in Salvia miltiorrhiza [J]. Chinese Herbal Medicines, 2020, 12(3): 237−246. doi: 10.1016/j.chmed.2020.04.001
|
[12] |
MENG F W, YANG C, CAO J D, et al. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice [J]. Journal of Integrative Plant Biology, 2020, 62(10): 1552−1573. doi: 10.1111/jipb.12922
|
[13] |
尹航. 露地菊CgbHLH113基因的克隆及功能分析[D]. 哈尔滨: 东北林业大学, 2021.
YIN H. Cloning and functional analysis of CgbHLH113 gene from Chrysanthemum × grandiflora[D]. Harbin: Northeast Forestry University, 2021. (in Chinese)
|
[14] |
LI Y Y, SUI X Y, YANG J S, et al. A novel bHLH transcription factor, NtbHLH1, modulates iron homeostasis in tobacco (Nicotiana tabacum L.) [J]. Biochemical and Biophysical Research Communications, 2020, 522(1): 233−239. doi: 10.1016/j.bbrc.2019.11.063
|
[15] |
YI K K, WU Z C, ZHOU J, et al. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice [J]. Plant Physiology, 2005, 138(4): 2087−2096. doi: 10.1104/pp.105.063115
|
[16] |
WANG F B, ZHU H, CHEN D H, et al. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 125(2): 387−398. doi: 10.1007/s11240-016-0953-1
|
[17] |
CHEN H C, CHENG W H, HONG C Y, et al. The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways, respectively [J]. Rice, 2018, 11(1): 50. doi: 10.1186/s12284-018-0244-z
|
[18] |
GAO Y, WU M Q, ZHANG M J, et al. Roles of a maize phytochrome-interacting factors protein ZmPIF3 in regulation of drought stress responses by controlling stomatal closure in transgenic rice without yield penalty [J]. Plant Molecular Biology, 2018, 97(4): 311−323.
|
[19] |
REN Y R, YANG Y Y, ZHAO Q, et al. MdCIB1, an apple bHLH transcription factor, plays a positive regulator in response to drought stress [J]. Environmental and Experimental Botany, 2021, 188: 104523. doi: 10.1016/j.envexpbot.2021.104523
|
[20] |
ZHAO Q, XIANG X H, LIU D, et al. Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis [J]. Frontiers in Plant Science, 2018, 9: 381. doi: 10.3389/fpls.2018.00381
|
[21] |
DONG H Z, CHEN Q M, DAI Y Q, et al. Genome-wide identification of PbrbHLH family genes, and expression analysis in response to drought and cold stresses in pear (Pyrus bretschneideri) [J]. BMC Plant Biology, 2021, 21(1): 86. doi: 10.1186/s12870-021-02862-5
|
[22] |
JIN R, KIM H S, YU T, et al. Identification and function analysis of bHLH genes in response to cold stress in sweetpotato [J]. Plant Physiology and Biochemistry, 2021, 169: 224−235. doi: 10.1016/j.plaphy.2021.11.027
|
[23] |
YU Z M, ZHANG G H, TEIXEIRA DA SILVA J A, et al. The methyl jasmonate-responsive transcription factor DobHLH4 promotes DoTPS10, which is involved in linalool biosynthesis in Dendrobium officinale during floral development [J]. Plant Science, 2021, 309: 110952. doi: 10.1016/j.plantsci.2021.110952
|
[24] |
CHEN Y, WANG Y Z, LYU P, et al. Comparative transcriptomic analysis reveal the regulation mechanism underlying MeJA-induced accumulation of alkaloids in Dendrobium officinale [J]. Journal of Plant Research, 2019, 132(3): 419−429. doi: 10.1007/s10265-019-01099-6
|
[25] |
张志勇, 阳静, 齐泽民. 铁皮石斛总RNA提取方法的比较研究 [J]. 江苏农业科学, 2017, 45(4):33−35. doi: 10.15889/j.issn.1002-1302.2017.04.009
ZHANG Z Y, YANG J, QI Z M. Comparative study on extraction methods of total RNA from Dendrobium candidum [J]. Jiangsu Agricultural Sciences, 2017, 45(4): 33−35.(in Chinese) doi: 10.15889/j.issn.1002-1302.2017.04.009
|
[26] |
ZHANG G Q, LIU K W, LI Z, et al. The Apostasia genome and the evolution of orchids [J]. Nature, 2017, 549(7672): 379−383. doi: 10.1038/nature23897
|
[27] |
WANG Y, LIU A Z. Genomic characterization and expression analysis of basic Helix-loop-Helix (bHLH) family genes in traditional Chinese herb Dendrobium officinale [J]. Plants (Basel, Switzerland), 2020, 9(8): 1044.
|
[28] |
李季生, 李娜, 贾漫丽, 等. 基于转录组数据挖掘桑树bHLH转录因子家族 [J]. 分子植物育种, 2022, 20(6):1798−1810. doi: 10.13271/j.mpb.020.001798
LI J S, LI N, JIA M L, et al. Mining bHLH transcription factor family of mulberry based on transcriptome data [J]. Molecular Plant Breeding, 2022, 20(6): 1798−1810.(in Chinese) doi: 10.13271/j.mpb.020.001798
|
[29] |
王菊萍, 王珍, 张铁军, 等. 蒺藜苜蓿MtbHLH148转录因子的克隆与转化及其功能分析 [J]. 西北植物学报, 2019, 39(6):963−973. doi: 10.7606/j.issn.1000-4025.2019.06.0963
WANG J P, WANG Z, ZHANG T J, et al. Cloning and analysis of a basic Helix-loop-Helix (bHLH) transcription factor MtbHLH148 from Medicago truncatula L [J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(6): 963−973.(in Chinese) doi: 10.7606/j.issn.1000-4025.2019.06.0963
|
[30] |
SUN W J, JIN X, MA Z T, et al. Basic helix-loop-helix (bHLH) gene family in Tartary buckwheat (Fagopyrum tataricum): Genome-wide identification, phylogeny, evolutionary expansion and expression analyses [J]. International Journal of Biological Macromolecules, 2020, 155: 1478−1490. doi: 10.1016/j.ijbiomac.2019.11.126
|
[31] |
杨贞, 蔡友铭, 张永春, 等. 基于SRAP分子标记的铁皮石斛遗传多样性分析 [J]. 上海农业学报, 2019, 35(5):23−27. doi: 10.15955/j.issn1000-3924.2019.05.05
YANG Z, CAI Y M, ZHANG Y C, et al. Genetic diversity analysis of Dendrobium officinale based on SRAP molecular markers [J]. Acta Agriculturae Shanghai, 2019, 35(5): 23−27.(in Chinese) doi: 10.15955/j.issn1000-3924.2019.05.05
|
[32] |
朱璐璐, 周波. bHLH蛋白在植物发育及非生物胁迫中的调控[J/OL]. 分子植物育种, 2021: 1-14. (2021-02-23). https://kns.cnki.net/kcms/detail/46.1068.S.20210222.1744.012.html.
ZHU L L, ZHOU B. Regulation of bHLH protein in plant development and abiotic stress[J/OL]. Molecular Plant Breeding, 2021: 1-14. (2021-02-23). https://kns.cnki.net/kcms/detail/46.1068.S.20210222.1744.012.html.(in Chinese)
|
[33] |
CASTILHOS G, LAZZAROTTO F, SPAGNOLO-FONINI L, et al. Possible roles of basic helix-loop-helix transcription factors in adaptation to drought [J]. Plant Science, 2014, 223: 1−7. doi: 10.1016/j.plantsci.2014.02.010
|
[34] |
LIU Y J, JI X Y, NIE X G, et al. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs [J]. The New Phytologist, 2015, 207(3): 692−709. doi: 10.1111/nph.13387
|
[35] |
JI X Y, NIE X G, LIU Y J, et al. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation [J]. Tree Physiology, 2016, 36(2): 193−207.
|
[36] |
耿晶晶. 甜橙bHLH家族转录因子发掘及CsbHLH18抗寒功能鉴定与作用机制解析[D]. 武汉: 华中农业大学, 2018: 77-79.
GENG J J. Genome-wide identification of bHLH transcription factor family in sweet orange(Citrus sinensis) and functional characterization and mechanism analysis of CsbHLH18 in cold resistance[D]. Wuhan: Huazhong Agricultural University, 2018: 77-79. (in Chinese)
|
[37] |
PARK S, LEE C, DOHERTY C J, et al. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network [J]. The Plant Journal, 2015, 82(2): 193−207. doi: 10.1111/tpj.12796
|
[38] |
CHINNUSAMY V, ZHU J K, SUNKAR R. Gene regulation during cold stress acclimation in plants [J]. Methods in Molecular Biology (Clifton, N J), 2010, 639: 39−55.
|
[39] |
CHINNUSAMY V, OHTA M, KANRAR S, et al. ICE1: A regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis [J]. Genes & Development, 2003, 17(8): 1043−1054.
|
[40] |
SHI Y T, DING Y L, YANG S H. Molecular regulation of CBF signaling in cold acclimation [J]. Trends in Plant Science, 2018, 23(7): 623−637. doi: 10.1016/j.tplants.2018.04.002
|