Citation: | WANG T, YANG C, YAN Y N, et al. Cloning and Expression of a Thioredoxin Gene CsTRXh1 from Citrus sinensis [J]. Fujian Journal of Agricultural Sciences,2022,37(7):880−885 doi: 10.19303/j.issn.1008-0384.2022.007.008 |
[1] |
WANG N. The Citrus huanglongbing crisis and potential solutions [J]. Molecular Plant, 2019, 12(5): 607−609. doi: 10.1016/j.molp.2019.03.008
|
[2] |
MA W X, PANG Z Q, HUANG X E, et al. Citrus Huanglongbing is a pathogen-triggered immune disease that can be mitigated with antioxidants and gibberellin [J]. Nature Communications, 2022, 13: 529. doi: 10.1038/s41467-022-28189-9
|
[3] |
GELHAYE E, ROUHIER N, NAVROT N, et al. The plant thioredoxin system [J]. Cellular and Molecular Life Sciences CMLS, 2005, 62(1): 24−35. doi: 10.1007/s00018-004-4296-4
|
[4] |
LEE M Y, SHIN K H, KIM Y K, et al. Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots [J]. Plant Physiology, 2005, 139(4): 1881−1889. doi: 10.1104/pp.105.067884
|
[5] |
SWEAT T A, WOLPERT T J. Thioredoxin h5 is required for victorin sensitivity mediated by a CC-NBS-LRR gene in Arabidopsis [J]. The Plant Cell, 2007, 19(2): 673−687. doi: 10.1105/tpc.106.047563
|
[6] |
MENG L, WONG J H, FELDMAN L J, et al. A membrane-associated thioredoxin required for plant growth moves from cell to cell, suggestive of a role in intercellular communication [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3900−3905. doi: 10.1073/pnas.0913759107
|
[7] |
ZHANG C J, ZHAO B C, GE W N, et al. An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice [J]. Plant Physiology, 2011, 157(4): 1884−1899. doi: 10.1104/pp.111.182808
|
[8] |
JI M G, PARK H J, CHA J Y, et al. Expression of Arabidopsis thaliana Thioredoxin-h2 in Brassica napus enhances antioxidant defenses and improves salt tolerance [J]. Plant Physiology and Biochemistry, 2020, 147: 313−321. doi: 10.1016/j.plaphy.2019.12.032
|
[9] |
WILKINS M R, GASTEIGER E, BAIROCH A, et al. Protein identification and analysis tools in the ExPASy server [J]. Methods in Molecular Biology (Clifton, N J), 1999, 112: 531−552.
|
[10] |
GEOURJON C, DELÉAGE G. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments [J]. Computer Applications in the Biosciences:CABIOS, 1995, 11(6): 681−684.
|
[11] |
TAMURA K, STECHER G, PETERSON D, et al. MEGA6: Molecular evolutionary genetics analysis version 6.0 [J]. Molecular Biology and Evolution, 2013, 30(12): 2725−2729. doi: 10.1093/molbev/mst197
|
[12] |
LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method [J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
|
[13] |
WASZCZAK C, CARMODY M, KANGASJÄRVI J. Reactive oxygen species in plant signaling [J]. Annual Review of Plant Biology, 2018, 69: 209−236. doi: 10.1146/annurev-arplant-042817-040322
|
[14] |
邱金龙, 金巧玲, 王钧. 活性氧与植物抗病反应 [J]. 植物生理学通讯, 1998, 34(1):56−63.
QIU J L, JIN Q L, WANG J. Activity of oxygen and plant disease resistance [J]. Plant Physiology Communications, 1998, 34(1): 56−63.(in Chinese)
|
[15] |
PITINO M, ARMSTRONG C M, DUAN Y P. Molecular mechanisms behind the accumulation of ATP and H2O2 in citrus plants in response to ‘Candidatus Liberibacter asiaticus’ infection [J]. Horticulture Research, 2017, 4: 17040. doi: 10.1038/hortres.2017.40
|
[16] |
MHAMDI A, NOCTOR G, BAKER A. Plant catalases: Peroxisomal redox guardians [J]. Archives of Biochemistry and Biophysics, 2012, 525(2): 181−194. doi: 10.1016/j.abb.2012.04.015
|
[17] |
MATA-PÉREZ C, SPOEL S H. Thioredoxin-mediated redox signalling in plant immunity [J]. Plant Science, 2019, 279: 27−33. doi: 10.1016/j.plantsci.2018.05.001
|
[18] |
CLARK K J, PANG Z Q, TRINH J, et al. Sec-delivered effector 1 (SDE1) of 'Candidatus Liberibacter asiaticus' promotes Citrus huanglongbing [J]. Molecular Plant-Microbe Interactions:MPMI, 2020, 33(12): 1394−1404. doi: 10.1094/MPMI-05-20-0123-R
|
[19] |
FAN J, CHEN C X, YU Q B, et al. Comparative transcriptional and anatomical analyses of tolerant rough lemon and susceptible sweet orange in response to ‘Candidatus Liberibacter asiaticus’ infection [J]. Molecular Plant-Microbe Interactions:MPMI, 2012, 25(11): 1396−1407. doi: 10.1094/MPMI-06-12-0150-R
|
[20] |
LIAO H L, BURNS J K. Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: Comparison with girdled fruit [J]. Journal of Experimental Botany, 2012, 63(8): 3307−3319. doi: 10.1093/jxb/ers070
|
[21] |
HU Y, ZHONG X, LIU X L, et al. Comparative transcriptome analysis unveils the tolerance mechanisms of Citrus hystrix in response to ‘Candidatus Liberibacter asiaticus’ infection [J]. PLoS One, 2017, 12(12): e0189229. doi: 10.1371/journal.pone.0189229
|