• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
AN Z X, LI Y X, ZHENG Y F, et al. Transcriptome-based Identification and Expressions of Amaranth TCP Gene Family [J]. Fujian Journal of Agricultural Sciences,2022,37(7):869−879 doi: 10.19303/j.issn.1008-0384.2022.007.007
Citation: AN Z X, LI Y X, ZHENG Y F, et al. Transcriptome-based Identification and Expressions of Amaranth TCP Gene Family [J]. Fujian Journal of Agricultural Sciences,2022,37(7):869−879 doi: 10.19303/j.issn.1008-0384.2022.007.007

Transcriptome-based Identification and Expressions of Amaranth TCP Gene Family

doi: 10.19303/j.issn.1008-0384.2022.007.007
  • Received Date: 2022-06-23
  • Rev Recd Date: 2022-07-07
  • Available Online: 2022-08-07
  • Publish Date: 2022-07-28
  •   Objective  Members of the amaranth TCP gene family were identified based on the transcriptome database for an in-depth understanding on the roles they associated with the growth, development, and abiotic stress of the plant.   Method  Members of the TCP gene family were identified by screening the transcriptome database on Dahong amaranth (Amaranthus tricolor L.) for a bioinformatics analysis. Amaranth seedlings were cultured under different conditions and their expressions under different treatments analyzed by qRT-PCR.   Results  Amaranth TCP gene family has 14 members, all localized in the nucleus. The length of AtrTCP protein was in the range of 230–721 aa, the predicted relative molecular weight was 25.25–78.57 kD, the isoelectric point was 6.15–9.45, and it contained 15 conserved motifs. Except AtrTCP11, which was stable protein, all the other proteins were unstable. Two AtrTCP family members, AtrTCP2 and AtrTCP6, were predicted as miR319 target genes by miRNA. qRT-PCR showed differentiated expressions of the family members under salt solutions of varied concentrations (i.e., 0, 50, 100, and 200 mmol·L−1). The expression of the upregulated AtrTCP10 reached a significant level under blue light, and so did those of the downregulated AtrTCP2, AtrTCP3, AtrTCP8, AtrTCP9, AtrTCP11, and AtrTCP13. Under different concentrations of ammonium nitrate ratio (0∶0, 0∶10, 3∶7, 5∶5, 7∶3, 10∶0) treatment, the expressions of the TCP genes differed. AtrTCP3 was shown to be involved in the entire nitrogen metabolism process. In tissues of amaranth, AtrTCP3 and AtrTCP12 were highly expressed in leaves, while the others in roots.   Conclusion   Depending on the treatments, the expressions of the amaranth TCP gene family members differed. It suggested a broad spectrum of involvements by the members associated with abiotic stresses on amaranth.
  • loading
  • [1]
    仝亚楠, 刘雪, 刘秀洁, 等. 苋菜原生质体和瞬时转化体系的建立及应用 [J]. 分子植物育种, 2021, 19(19):6476−6481. doi: 10.13271/j.mpb.019.006476

    TONG Y N, LIU X, LIU X J, et al. Establishment and application of protoplast and transient transformation system of edible amaranth (Amaranthus spp. ) [J]. Molecular Plant Breeding, 2021, 19(19): 6476−6481.(in Chinese) doi: 10.13271/j.mpb.019.006476
    [2]
    STRACK D, VOGT T, SCHLIEMANN W. Recent advances in betalain research [J]. Phytochemistry, 2003, 62(3): 247−269. doi: 10.1016/S0031-9422(02)00564-2
    [3]
    柳燕, 谢礼洋, 赖钟雄, 等. 苋菜amaAG基因克隆与生物信息学分析 [J]. 江西农业大学学报, 2017, 39(1):168−174. doi: 10.13836/j.jjau.2017022

    LIU Y, XIE L Y, LAI Z X, et al. Cloning and bioinformatics analysis of ama AG in Amaranthus tricolor L [J]. Acta Agriculturae Universitatis Jiangxiensis, 2017, 39(1): 168−174.(in Chinese) doi: 10.13836/j.jjau.2017022
    [4]
    CUBAS P, LAUTER N, DOEBLEY J, et al. The TCP domain: A motif found in proteins regulating plant growth and development [J]. The Plant Journal, 1999, 18(2): 215−222. doi: 10.1046/j.1365-313X.1999.00444.x
    [5]
    HUO Y Z, XIONG W D, SU K L, et al. Genome-wide analysis of the TCP gene family in switchgrass (Panicum virgatum L.)[J]. International Journal of Genomics, 2019: https://doaj.org/article/613044632d6d4e2f9f696c52793c0ebd.
    [6]
    PARK H C, KIM M L, KANG Y H, et al. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor [J]. Plant Physiology, 2004, 135(4): 2150−2161. doi: 10.1104/pp.104.041442
    [7]
    李佳皓, 谢敏秋, 万传银, 等. 马铃薯转录因子StTCP13基因的原核表达及盐胁迫功能研究 [J]. 华北农学报, 2021, 36(2):33−39. doi: 10.7668/hbnxb.20191507

    LI J H, XIE M Q, WAN C Y, et al. Prokaryotic expression of transcription factor StTCP13 in potato and its function of salt stress [J]. Acta Agriculturae Boreali-Sinica, 2021, 36(2): 33−39.(in Chinese) doi: 10.7668/hbnxb.20191507
    [8]
    FANG Y J, ZHENG Y Q, LU W, et al. Roles of miR319-regulated TCPs in plant development and response to abiotic stress [J]. The Crop Journal, 2021, 9(1): 17−28. doi: 10.1016/j.cj.2020.07.007
    [9]
    郑玲, 白雪婷, 李会云. 高粱TCP基因家族全基因组鉴定及表达分析 [J]. 河南农业科学, 2019, 48(10):30−36.

    ZHENG L, BAI X T, LI H Y. Genome-wide identification and expression analysis of TCP gene family in Sorghum bicolor L [J]. Journal of Henan Agricultural Sciences, 2019, 48(10): 30−36.(in Chinese)
    [10]
    李旭娟, 林秀琴, 刘洪博, 等. 甘蔗TB1基因的克隆与生物信息学分析 [J]. 热带作物学报, 2015, 36(11):1978−1985. doi: 10.3969/j.issn.1000-2561.2015.11.010

    LI X J, LIN X Q, LIU H B, et al. Cloning and bioinformatics analysis of the TB1 gene in sugarcane [J]. Chinese Journal of Tropical Crops, 2015, 36(11): 1978−1985.(in Chinese) doi: 10.3969/j.issn.1000-2561.2015.11.010
    [11]
    任丽. 白桦BpTCP3基因的功能研究[D]. 哈尔滨: 东北林业大学, 2019.

    REN L. Function analysis of BpTCP3 gene in Betula platyphylla[D]. Harbin: Northeast Forestry University, 2019. (in Chinese)
    [12]
    DUAN A Q, WANG Y W, FENG K, et al. TCP family genes control leaf development and its responses to gibberellin in celery [J]. Acta Physiologiae Plantarum, 2019, 41(9): 153. doi: 10.1007/s11738-019-2945-3
    [13]
    RIECHMANN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes [J]. Science, 2000, 290(5499): 2105−2110. doi: 10.1126/science.290.5499.2105
    [14]
    冯建英, 李立芹, 李佳皓, 等. 马铃薯TCP家族转录因子鉴定与表达模式分析 [J]. 基因组学与应用生物学, 2021, 40(S2):2756−2764. doi: 10.13417/j.gab.040.002756

    FENG J Y, LI L Q, LI J H, et al. Identification and expression pattern analysis of TCP family transcription factors in potato [J]. Genomics and Applied Biology, 2021, 40(S2): 2756−2764.(in Chinese) doi: 10.13417/j.gab.040.002756
    [15]
    杨婷, 黎成, 申佳瑜, 等. 茄子TCP基因家族全基因组的鉴定与分析[J/OL]. 生物工程学报: 1-21. [2022-07-06]. DOI: 10.13345/j. cjb. 220114.

    YANG T, LI C, SHEN JY, et al. Identification and analysis of the complete genome of the TCP gene family in Eggplant[J/OL]. Chinese Journal of Bioengineering: 1-21[2022-07-06]. DOI: 10.13345/j.cjb.220114. (in Chinese)
    [16]
    关紫微, 曹希雅, 张先文, 等. 水稻TCP家族的全基因组鉴定及表达水平分析[J/OL]. 分子植物育种, 2020: 1-18. (2020-12-29). https://kns.cnki.net/kcms/detail/46.1068.S.20201229.0941.002.html.

    GUAN Z W, CAO X Y, ZHANG X W, et al. Genome-wide identification and expression analysis of TCP gene family in rice(Oryza sativa L. )[J/OL]. Molecular Plant Breeding, 2020: 1-18. (2020-12-29). https://kns.cnki.net/kcms/detail/46.1068.S.20201229.0941.002.html.(in Chinese)
    [17]
    王景超, 张君, 齐云, 等. 玉米TCP家族基因的表达分析 [J]. 玉米科学, 2022, 30(1):63−68. doi: 10.13597/j.cnki.maize.science.20220109

    WANG J C, ZHANG J, QI Y, et al. Expression analysis on TCP family genes of maize [J]. Journal of Maize Sciences, 2022, 30(1): 63−68.(in Chinese) doi: 10.13597/j.cnki.maize.science.20220109
    [18]
    陈何, 王乐, 赵春丽, 等. 氮素和红蓝复合光配比对苋菜幼苗亚硝酸还原酶活性及其基因表达的影响 [J]. 中国农业大学学报, 2021, 26(8):61−71. doi: 10.11841/j.issn.1007-4333.2021.08.07

    CHEN H, WANG L, ZHAO C L, et al. Effects of nitrogen and red and blue light on NiR enzyme activity and gene expression in Amaranthus tricolor L. seedlings [J]. Journal of China Agricultural University, 2021, 26(8): 61−71.(in Chinese) doi: 10.11841/j.issn.1007-4333.2021.08.07
    [19]
    王乐, 陈何, 陈家兰, 等. 基于苋菜转录组的ARF基因家族鉴定及表达 [J]. 应用与环境生物学报, 2021, 27(1):167−176.

    WANG L, CHEN H, CHEN J L, et al. Identification and expression of ARF gene family based on Amaranthus tricolor L. transcriptome [J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(1): 167−176.(in Chinese)
    [20]
    孙菡笛, 薛江芝, 刘亚洁, 等. 玉米TCP转录因子家族的全基因组鉴定及表达模式分析 [J]. 分子植物育种, 2021, 19(8):2460−2471. doi: 10.13271/j.mpb.019.002460

    SUN H D, XUE J Z, LIU Y J, et al. Genome identification and expression pattern analysis of TCP transcription factor family in maize [J]. Molecular Plant Breeding, 2021, 19(8): 2460−2471.(in Chinese) doi: 10.13271/j.mpb.019.002460
    [21]
    丁宁, 李梓彰, 田文, 等. 小麦TCP基因家族的全基因组鉴定和对热胁迫的响应 [J]. 麦类作物学报, 2018, 38(10):1157−1165. doi: 10.7606/j.issn.1009-1041.2018.10.03

    DING N, LI Z Z, TIAN W, et al. Genome-wide identification of the wheat TCP gene family and its response to heat stress [J]. Journal of Triticeae Crops, 2018, 38(10): 1157−1165.(in Chinese) doi: 10.7606/j.issn.1009-1041.2018.10.03
    [22]
    YIN Z J, LI Y, ZHU W D, et al. Identification, characterization, and expression patterns of TCP genes and microRNA319 in cotton [J]. International Journal of Molecular Sciences, 2018, 19(11): 3655. doi: 10.3390/ijms19113655
    [23]
    白永宏, 赵赞延, 魏雄博, 等. 谷子TCP转录因子家族成员鉴定与生物信息学分析 [J]. 南方农业学报, 2020, 51(6):1300−1307.

    BAI Y H, ZHAO Z Y, WEI X B, et al. Identification and bioinformatics analysis of TCP transcription factor family member in Setaria italic L. (foxtail millet) [J]. Journal of Southern Agriculture, 2020, 51(6): 1300−1307.(in Chinese)
    [24]
    冯志娟, 徐盛春, 刘娜, 等. 植物TCP转录因子的作用机理及其应用研究进展 [J]. 植物遗传资源学报, 2018, 19(1):112−121.

    FENG Z J, XU S C, LIU N, et al. Molecular mechanisms and applications of TCP transcription factors in plants [J]. Journal of Plant Genetic Resources, 2018, 19(1): 112−121.(in Chinese)
    [25]
    张延召, 罗新, 李会云, 等. 牡丹TCP家族基因的鉴定与生物信息学分析 [J]. 分子植物育种, 2022, 20(1):31−37. doi: 10.13271/j.mpb.020.000031

    ZHANG Y Z, LUO X, LI H Y, et al. Identification and bioinformatics analysis of TCP family genes in tree peony [J]. Molecular Plant Breeding, 2022, 20(1): 31−37.(in Chinese) doi: 10.13271/j.mpb.020.000031
    [26]
    HERVÉ C, DABOS P, BARDET C, et al. In vivo interference with AtTCP20 function induces severe plant growth alterations and deregulates the expression of many genes important for development [J]. Plant Physiology, 2009, 149(3): 1462−1477. doi: 10.1104/pp.108.126136
    [27]
    何志敏. 拟南芥转录因子TCP2与CRY1相互作用的遗传学与生化分析[D]. 长沙: 湖南大学, 2016.

    HE Z M. The molecular genetical and biochemical study of transcription factor TCP2 and CRY1 interaction in Arabidopsis[D]. Changsha: Hunan University, 2016. (in Chinese)
    [28]
    安新艳, 楼盼盼, 郝娟. 植物TCP转录因子的研究进展 [J]. 安徽农业科学, 2020, 48(15):20−23,27. doi: 10.3969/j.issn.0517-6611.2020.15.006

    AN X Y, LOU P P, HAO J. Research progress on plant TCP transcription factors [J]. Journal of Anhui Agricultural Sciences, 2020, 48(15): 20−23,27.(in Chinese) doi: 10.3969/j.issn.0517-6611.2020.15.006
    [29]
    安家兴. 拟南芥TCP11调控维管束的发育[D]. 兰州: 兰州大学, 2012.

    AN J X. TCP11Regalates the development of vascular bundles in arahidopsis thaliana[D]. Lanzhou: Lanzhou University, 2012. (in Chinese)
    [30]
    KOROLEVA O A, TOMLINSON M L, LEADER D, et al. High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions [J]. The Plant Journal:for Cell and Molecular Biology, 2005, 41(1): 162−174.
    [31]
    张松莲, 曾富华, 喻宁华, 等. 植物miRNA的功能及其作用机制 [J]. 热带亚热带植物学报, 2006, 14(5):444−450. doi: 10.3969/j.issn.1005-3395.2006.05.015

    ZHANG S L, ZENG F H, YU N H, et al. Advances in studies on the function and mechanism of plant microRNA [J]. Journal of Tropical and Subtropical Botany, 2006, 14(5): 444−450.(in Chinese) doi: 10.3969/j.issn.1005-3395.2006.05.015
    [32]
    李坤杰, 谭杉杉, 孙勃, 等. 芥菜TCP转录因子家族全基因组鉴定及表达分析 [J]. 四川农业大学学报, 2019, 37(4):459−468.

    LI K J, TAN S S, SUN B, et al. Genome-wide identification and analysis of TCP transcription factor family in Brassica juncea [J]. Journal of Sichuan Agricultural University, 2019, 37(4): 459−468.(in Chinese)
    [33]
    LIN Y F, CHEN Y Y, HSIAO Y Y, et al. Genome-wide identification and characterization of TCP genes involved in ovule development of Phalaenopsis equestris [J]. Journal of Experimental Botany, 2016, 67(17): 5051−5066. doi: 10.1093/jxb/erw273
    [34]
    KOYAMA T, SATO F, OHME-TAKAGI M. Roles of miR319 and TCP transcription factors in leaf development [J]. Plant Physiology, 2017, 175(2): 874−885. doi: 10.1104/pp.17.00732
    [35]
    LIU S C, ZHENG X L, PAN J F, et al. RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L [J]. PLoS One, 2019, 14(4): e0216001. doi: 10.1371/journal.pone.0216001
    [36]
    王廷芹, 甘秋霞, 李倩茹. 盐胁迫对苋菜种子的发芽及幼苗生长的影响 [J]. 贵州大学学报(自然科学版), 2021, 38(1):10−15,32. doi: 10.15958/j.cnki.gdxbzrb.2021.01.02

    WANG T Q, GAN Q X, LI Q R. Effect of salt stress on seed germination and seedling growth of amaranth [J]. Journal of Guizhou University (Natural Sciences), 2021, 38(1): 10−15,32.(in Chinese) doi: 10.15958/j.cnki.gdxbzrb.2021.01.02
    [37]
    曾泳怡, 冯梓晴, 曾晓靖, 等. NaCl胁迫对不同基因型水稻种子萌发和幼苗生长的影响 [J]. 安徽农业科学, 2021, 49(7):25−29. doi: 10.3969/j.issn.0517-6611.2021.07.007

    ZENG Y Y, FENG Z Q, ZENG X J, et al. Effects of NaCl stress on seed germination and seedling growth of different rice genotypes [J]. Journal of Anhui Agricultural Sciences, 2021, 49(7): 25−29.(in Chinese) doi: 10.3969/j.issn.0517-6611.2021.07.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views (568) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return