Citation: | LI X, YANG L, WU F Z. Effects of Melatonin on Tomato Polyamine Metabolism and Cold Tolerance Gene Expression under Low Temperature Stress [J]. Fujian Journal of Agricultural Sciences,2022,37(7):855−868 doi: 10.19303/j.issn.1008-0384.2022.007.006 |
[1] |
LIU H, OUYANG B, ZHANG J H, et al. Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress [J]. PLoS One, 2012, 7(11): e50785. doi: 10.1371/journal.pone.0050785
|
[2] |
LIU Y F, QI M F, LI T L. Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery [J]. Plant Science, 2012, 196: 8−17. doi: 10.1016/j.plantsci.2012.07.005
|
[3] |
SHI H T, JIANG C, YE T T, et al. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass[Cynodon dactylon (L). Pers. ]by exogenous melatonin [J]. Journal of Experimental Botany, 2014, 66(3): 681−694.
|
[4] |
GONG X Q, SHI S T, DOU F F, et al. Exogenous melatonin alleviates alkaline stress in Malus hupehensis rehd. by regulating the biosynthesis of polyamines [J]. Molecules (Basel, Switzerland), 2017, 22(9): 1542. doi: 10.3390/molecules22091542
|
[5] |
张贵友, 李萍, 戴尧仁. 低温胁迫下褪黑激素对烟草悬浮细胞精氨酸脱羧酶活性的影响 [J]. 植物学通报, 2005, 40(5):555−559.
ZHANG G Y, LI P, DAI Y R. Arginine decarboxylase activity is increased in tobacco (Nicotiana tabacum) suspension cells by exogenous melatonin during cold stress [J]. Chinese Bulletin of Botany, 2005, 40(5): 555−559.(in Chinese)
|
[6] |
KE Q B, YE J, WANG B M, et al. Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism [J]. Frontiers in Plant Science, 2018, 9: 914. doi: 10.3389/fpls.2018.00914
|
[7] |
BOSE S K, HOWLADER P. Melatonin plays multifunctional role in horticultural crops against environmental stresses: A review [J]. Environmental and Experimental Botany, 2020, 176: 104063. doi: 10.1016/j.envexpbot.2020.104063
|
[8] |
SHI H T, CHAN Z L. The cysteine2/histidine2-type transcription factor zinc finger of Arabidopsis thaliana 6-activated c-repeat-binding factor pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis [J]. Journal of Pineal Research, 2014, 57(2): 185−191. doi: 10.1111/jpi.12155
|
[9] |
BAJWA V S, SHUKLA M R, SHERIF S M, et al. Role of melatonin in alleviating cold stress in Arabidopsis thaliana [J]. Journal of Pineal Research, 2014, 56(3): 238−245. doi: 10.1111/jpi.12115
|
[10] |
LI H, CHANG J J, ZHENG J X, et al. Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport [J]. Scientific Reports, 2017, 7: 40858. doi: 10.1038/srep40858
|
[11] |
LEI X Y, ZHU R Y, ZHANG G Y, et al. Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: The possible involvement of polyamines [J]. Journal of Pineal Research, 2004, 36(2): 126−131. doi: 10.1046/j.1600-079X.2003.00106.x
|
[12] |
LI H, HE J, YANG X Z, et al. Glutathione-dependent induction of local and systemic defense against oxidative stress by exogenous melatonin in cucumber (Cucumis sativus L. ) [J]. Journal of Pineal Research, 2016, 60(2): 206−216. doi: 10.1111/jpi.12304
|
[13] |
FUELL C, ELLIOTT K A, HANFREY C C, et al. Polyamine biosynthetic diversity in plants and algae [J]. Plant Physiology and Biochemistry, 2010, 48(7): 513−520. doi: 10.1016/j.plaphy.2010.02.008
|
[14] |
王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 3版. 北京: 高等教育出版社, 2015: 280-281.
|
[15] |
ISHITANI M, XIONG L, LEE H, et al. HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis [J]. The Plant Cell, 1998, 10(7): 1151−1161. doi: 10.1105/tpc.10.7.1151
|
[16] |
GIANNOPOLITIS C N, RIES S K. Superoxide dismutases [J]. Plant Physiology, 1977, 59(2): 309−314. doi: 10.1104/pp.59.2.309
|
[17] |
NICKEL K S, CUNNINGHAM B A. Improved peroxidase assay method using leuco 2, 3', 6-trichloroindophenol and application to comparative measurements of peroxidatic catalysis [J]. Analytical Biochemistry, 1969, 27(2): 292−299. doi: 10.1016/0003-2697(69)90035-9
|
[18] |
DHINDSA R S, PLUMB-DHINDSA P L, REID D M. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen [J]. Physiologia Plantarum, 1982, 56(4): 453−457. doi: 10.1111/j.1399-3054.1982.tb04539.x
|
[19] |
PINHERO R G, RAO M V, et al. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings [J]. Plant Physiology, 1997, 114(2): 695−704. doi: 10.1104/pp.114.2.695
|
[20] |
DUAN J J, LI J, GUO S R, et al. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance [J]. Journal of Plant Physiology, 2008, 165(15): 1620−1635. doi: 10.1016/j.jplph.2007.11.006
|
[21] |
ZHAO F G, SUN C, LIU Y L, et al. Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings [J]. Acta Botanica Sinica, 2003, 45(3): 295−300.
|
[22] |
SU G X, AN Z F, ZHANG W H, et al. Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls [J]. Journal of Plant Physiology, 2005, 162(12): 1297−1303. doi: 10.1016/j.jplph.2005.04.033
|
[23] |
COHEN S A, BIDLINGMEYER B A, TARVIN T L. PITC derivatives in amino acid analysis [J]. Nature, 1986, 320(6064): 769−770. doi: 10.1038/320769a0
|
[24] |
STEPONKUS P L. Role of the plasma membrane in freezing injury and cold acclimation [J]. Annual Review of Plant Physiology, 1984, 35: 543−584. doi: 10.1146/annurev.pp.35.060184.002551
|
[25] |
MIURA K, SHIBA H, OHTA M, et al. SlICE1 encoding a MYC-type transcription factor controls cold tolerance in tomato, Solanum lycopersicum [J]. Plant Biotechnology, 2012, 29(3): 253−260. doi: 10.5511/plantbiotechnology.12.0303a
|
[26] |
DIONISIO-SESE M L, TOBITA S. Antioxidant responses of rice seedlings to salinity stress [J]. Plant Science, 1998, 135(1): 1−9. doi: 10.1016/S0168-9452(98)00025-9
|
[27] |
刁倩楠, 范红伟, 张文献, 等. 外源物质对低温下甜瓜种子萌发和幼苗生理特性的影响 [J]. 分子植物育种, 2020, 18(21):7209−7216. doi: 10.13271/j.mpb.018.007209
DIAO Q N, FAN H W, ZHANG W X, et al. Exogenous substances on seed germination, physiological characteristics of melon under chilling stress [J]. Molecular Plant Breeding, 2020, 18(21): 7209−7216.(in Chinese) doi: 10.13271/j.mpb.018.007209
|
[28] |
WANG L Y, LIU J L, WANG W X, et al. Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress [J]. Photosynthetica, 2016, 54(1): 19−27. doi: 10.1007/s11099-015-0140-3
|
[29] |
巩彪, 史庆华. 园艺作物褪黑素的研究进展 [J]. 中国农业科学, 2017, 50(12):2326−2337. doi: 10.3864/j.issn.0578-1752.2017.12.013
GONG B, SHI Q H. Review of melatonin in horticultural crops [J]. Scientia Agricultura Sinica, 2017, 50(12): 2326−2337.(in Chinese) doi: 10.3864/j.issn.0578-1752.2017.12.013
|
[30] |
JAHAN M S, SHU S, WANG Y, et al. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis [J]. BMC Plant Biology, 2019, 19(1): 414. doi: 10.1186/s12870-019-1992-7
|
[31] |
ZHANG Q, LIU X F, ZHANG Z F, et al. Melatonin improved waterlogging tolerance in alfalfa (Medicago sativa) by reprogramming polyamine and ethylene metabolism [J]. Frontiers in Plant Science, 2019, 10: 44. doi: 10.3389/fpls.2019.00044
|
[32] |
BRETON G, DANYLUK J, CHARRON J B F, et al. Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis [J]. Plant Physiology, 2003, 132(1): 64−74. doi: 10.1104/pp.102.015255
|
[33] |
范华, 冯双庆, 赵玉梅. 黄瓜、番茄冷害以及黄瓜温度预处理与多胺的相关性 [J]. 中国农业大学学报, 1996, 1(1):108−112.
FAN H, FENG S Q, ZHAO Y M. The correlation of polyamines with chilling injury of cucumber and tomato and the treatments for alleviating chilling injury [J]. Journal of China Agricultural University, 1996, 1(1): 108−112.(in Chinese)
|
[34] |
SONG Y J, DIAO Q N, QI H Y. Putrescine enhances chilling tolerance of tomato (Lycopersicon esculentum Mill.) through modulating antioxidant systems [J]. Acta Physiologiae Plantarum, 2014, 36(11): 3013−3027. doi: 10.1007/s11738-014-1672-z
|
[35] |
LIU J H, KITASHIBA H, WANG J, et al. Polyamines and their ability to provide environmental stress tolerance to plants [J]. Plant Biotechnology, 2007, 24(1): 117−126. doi: 10.5511/plantbiotechnology.24.117
|
[36] |
WANG J, SUN P P, CHEN C L, et al. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis [J]. Journal of Experimental Botany, 2011, 62(8): 2899−2914. doi: 10.1093/jxb/erq463
|
[37] |
计淑霞, 戴绍军, 刘炜. 植物应答低温胁迫机制的研究进展 [J]. 生命科学, 2010, 22(10):1013−1019. doi: 10.13376/j.cbls/2010.10.006
JI S X, DAI S J, LIU W. The advances of plants in response and adaption to low temperature stress [J]. Chinese Bulletin of Life Sciences, 2010, 22(10): 1013−1019.(in Chinese) doi: 10.13376/j.cbls/2010.10.006
|
[38] |
THOMASHOW M F. Role of cold-responsive genes in plant freezing tolerance [J]. Plant Physiology, 1998, 118(1): 1−8. doi: 10.1104/pp.118.1.1
|
[39] |
SHI Y T, DING Y L, YANG S H. Molecular regulation of CBF signaling in cold acclimation [J]. Trends in Plant Science, 2018, 23(7): 623−637. doi: 10.1016/j.tplants.2018.04.002
|
[40] |
WANG D Z, JIN Y N, DING X H, et al. Gene regulation and signal transduction in the ICE-CBF-COR signaling pathway during cold stress in plants [J]. Biochemistry Biokhimiia, 2017, 82(10): 1103−1117. doi: 10.1134/S0006297917100030
|
[41] |
MA X C, CHEN C, YANG M M, et al. Cold-regulated protein (SlCOR413IM1) confers chilling stress tolerance in tomato plants [J]. Plant Physiology and Biochemistry, 2018, 124: 29−39. doi: 10.1016/j.plaphy.2018.01.003
|
[42] |
WANG F, CHEN X X, DONG S J, et al. Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato [J]. Plant Biotechnology Journal, 2020, 18(4): 1041−1055. doi: 10.1111/pbi.13272
|
[43] |
KOU S, CHEN L, TU W, et al. The arginine decarboxylase gene ADC1, associated to the putrescine pathway, plays an important role in potato cold-acclimated freezing tolerance as revealed by transcriptome and metabolome analyses [J]. The Plant Journal, 2018, 96(6): 1283−1298. doi: 10.1111/tpj.14126
|
[44] |
KIM Y S, LEE M, LEE J H, et al. The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis [J]. Plant Molecular Biology, 2015, 89(1/2): 187−201.
|
[45] |
PARK S, LEE C M, DOHERTY C J, et al. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network [J]. The Plant Journal, 2015, 82(2): 193−207. doi: 10.1111/tpj.12796
|
[46] |
GILMOUR S J, FOWLER S G, THOMASHOW M F. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities [J]. Plant Molecular Biology, 2004, 54(5): 767−781. doi: 10.1023/B:PLAN.0000040902.06881.d4
|
[47] |
LI H, DING Y L, SHI Y T, et al. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis [J]. Developmental Cell, 2017, 43(5): 630−642.e4. doi: 10.1016/j.devcel.2017.09.025
|
[48] |
LIU Y K, ZHOU J. MAPping kinase regulation of ICE1 in freezing tolerance [J]. Trends in Plant Science, 2018, 23(2): 91−93. doi: 10.1016/j.tplants.2017.12.002
|
[49] |
RAMIREZ V E, POPPENBERGER B. MAP kinase signaling turns to ICE [J]. Developmental Cell, 2017, 43(5): 545−546. doi: 10.1016/j.devcel.2017.10.032
|
[50] |
WANG L, ZHAO R R, ZHENG Y Y, et al. SlMAPK1/2/3 and antioxidant enzymes are associated with H2O 2-induced chilling tolerance in tomato plants [J]. Journal of Agricultural and Food Chemistry, 2017, 65(32): 6812−6820. doi: 10.1021/acs.jafc.7b01685
|
[51] |
TAKAHASHI Y, BERBERICH T, MIYAZAKI A, et al. Spermine signalling in tobacco: Activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction [J]. The Plant Journal, 2003, 36(6): 820−829. doi: 10.1046/j.1365-313X.2003.01923.x
|
[52] |
DAVLETOVA S, SCHLAUCH K, COUTU J, et al. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis [J]. Plant Physiology, 2005, 139(2): 847−856. doi: 10.1104/pp.105.068254
|
[53] |
LI C, WANG P, WEI Z W, et al. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis [J]. Journal of Pineal Research, 2012, 53(3): 298−306. doi: 10.1111/j.1600-079X.2012.00999.x
|
[54] |
ZHAO Y, TAN D X, LEI Q, et al. Melatonin and its potential biological functions in the fruits of sweet cherry [J]. Journal of Pineal Research, 2013, 55(1): 79−88. doi: 10.1111/jpi.12044
|