• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
LI X, YANG L, WU F Z. Effects of Melatonin on Tomato Polyamine Metabolism and Cold Tolerance Gene Expression under Low Temperature Stress [J]. Fujian Journal of Agricultural Sciences,2022,37(7):855−868 doi: 10.19303/j.issn.1008-0384.2022.007.006
Citation: LI X, YANG L, WU F Z. Effects of Melatonin on Tomato Polyamine Metabolism and Cold Tolerance Gene Expression under Low Temperature Stress [J]. Fujian Journal of Agricultural Sciences,2022,37(7):855−868 doi: 10.19303/j.issn.1008-0384.2022.007.006

Effects of Melatonin on Tomato Polyamine Metabolism and Cold Tolerance Gene Expression under Low Temperature Stress

doi: 10.19303/j.issn.1008-0384.2022.007.006
  • Received Date: 2022-05-07
  • Rev Recd Date: 2022-06-06
  • Available Online: 2022-06-20
  • Publish Date: 2022-07-28
  •   Objective   Polyamine metabolism and expression of cold tolerance genes associated with the mechanism of melatonin in alleviating low temperature stress in tomato were investigated.   Method  Solutions of melatonin in the concentrations of 50, 100, 200, and 300 µmol·L−1 were sprayed on the leaves of Dongnong 708 tomato plants (Solanum lycopersicum). Under low temperature, optimal concentration of melatonin for the stress alleviation was determined according to the malondialdehyde content and electrolyte leakage rate in the leaves. Effects of the treatment on the growth, polyamine metabolism, and cold tolerance gene expression, as well as those of putrescine (Put) synthesis inhibitor and melatonin pretreatment on polyamine content and antioxidant characteristics, of the plants were determined.   Result  Pretreating the tomato plans with melatonin prior to low temperature exposure lessened the seedling growth retardation induced by the stress. The plant height and fresh/dry weights as well as the Put in leaf at all stages of the stress imposition were significantly increased. The contents of spermidine (Spd) and spermine (Spm) rose significantly on the 2nd day after low temperature treatment before tapering off. The arginine (Arg) content, arginine decarboxylase (ADC) activity, and ADC synthesis-related gene expressions became significantly higher with the melatonin pretreatment, while the Put catabolic enzyme diamine oxidase (DAO) activity and gene expression significantly declined. A challenge test confirmed that, under low temperature stress, the Put synthesis inhibitor in the arginine pathway significantly reduced the melatonin-induced enhancements on Put accumulation and antioxidant enzyme activity, which would otherwise provide a protective effect on the cell membrane. Additionally, the expression of cold tolerance genes related to Put in tomato leaves was upregulated with the presence of melatonin.   Conclusion  Melatonin positively regulated the accumulation, but inhibited the degradation, of Put mediated by arginine. The arginine mediated Put synthesis pathway played an important role in the antioxidant defense of the tomato plants improved by melatonin. In addition, melatonin might also increase the expression of cold tolerance genes by way of promoting the Put synthesis to further boost the cold tolerance of tomato seedlings.
  • loading
  • [1]
    LIU H, OUYANG B, ZHANG J H, et al. Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress [J]. PLoS One, 2012, 7(11): e50785. doi: 10.1371/journal.pone.0050785
    [2]
    LIU Y F, QI M F, LI T L. Photosynthesis, photoinhibition, and antioxidant system in tomato leaves stressed by low night temperature and their subsequent recovery [J]. Plant Science, 2012, 196: 8−17. doi: 10.1016/j.plantsci.2012.07.005
    [3]
    SHI H T, JIANG C, YE T T, et al. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass[Cynodon dactylon (L). Pers. ]by exogenous melatonin [J]. Journal of Experimental Botany, 2014, 66(3): 681−694.
    [4]
    GONG X Q, SHI S T, DOU F F, et al. Exogenous melatonin alleviates alkaline stress in Malus hupehensis rehd. by regulating the biosynthesis of polyamines [J]. Molecules (Basel, Switzerland), 2017, 22(9): 1542. doi: 10.3390/molecules22091542
    [5]
    张贵友, 李萍, 戴尧仁. 低温胁迫下褪黑激素对烟草悬浮细胞精氨酸脱羧酶活性的影响 [J]. 植物学通报, 2005, 40(5):555−559.

    ZHANG G Y, LI P, DAI Y R. Arginine decarboxylase activity is increased in tobacco (Nicotiana tabacum) suspension cells by exogenous melatonin during cold stress [J]. Chinese Bulletin of Botany, 2005, 40(5): 555−559.(in Chinese)
    [6]
    KE Q B, YE J, WANG B M, et al. Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism [J]. Frontiers in Plant Science, 2018, 9: 914. doi: 10.3389/fpls.2018.00914
    [7]
    BOSE S K, HOWLADER P. Melatonin plays multifunctional role in horticultural crops against environmental stresses: A review [J]. Environmental and Experimental Botany, 2020, 176: 104063. doi: 10.1016/j.envexpbot.2020.104063
    [8]
    SHI H T, CHAN Z L. The cysteine2/histidine2-type transcription factor zinc finger of Arabidopsis thaliana 6-activated c-repeat-binding factor pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis [J]. Journal of Pineal Research, 2014, 57(2): 185−191. doi: 10.1111/jpi.12155
    [9]
    BAJWA V S, SHUKLA M R, SHERIF S M, et al. Role of melatonin in alleviating cold stress in Arabidopsis thaliana [J]. Journal of Pineal Research, 2014, 56(3): 238−245. doi: 10.1111/jpi.12115
    [10]
    LI H, CHANG J J, ZHENG J X, et al. Local melatonin application induces cold tolerance in distant organs of Citrullus lanatus L. via long distance transport [J]. Scientific Reports, 2017, 7: 40858. doi: 10.1038/srep40858
    [11]
    LEI X Y, ZHU R Y, ZHANG G Y, et al. Attenuation of cold-induced apoptosis by exogenous melatonin in carrot suspension cells: The possible involvement of polyamines [J]. Journal of Pineal Research, 2004, 36(2): 126−131. doi: 10.1046/j.1600-079X.2003.00106.x
    [12]
    LI H, HE J, YANG X Z, et al. Glutathione-dependent induction of local and systemic defense against oxidative stress by exogenous melatonin in cucumber (Cucumis sativus L. ) [J]. Journal of Pineal Research, 2016, 60(2): 206−216. doi: 10.1111/jpi.12304
    [13]
    FUELL C, ELLIOTT K A, HANFREY C C, et al. Polyamine biosynthetic diversity in plants and algae [J]. Plant Physiology and Biochemistry, 2010, 48(7): 513−520. doi: 10.1016/j.plaphy.2010.02.008
    [14]
    王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 3版. 北京: 高等教育出版社, 2015: 280-281.
    [15]
    ISHITANI M, XIONG L, LEE H, et al. HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis [J]. The Plant Cell, 1998, 10(7): 1151−1161. doi: 10.1105/tpc.10.7.1151
    [16]
    GIANNOPOLITIS C N, RIES S K. Superoxide dismutases [J]. Plant Physiology, 1977, 59(2): 309−314. doi: 10.1104/pp.59.2.309
    [17]
    NICKEL K S, CUNNINGHAM B A. Improved peroxidase assay method using leuco 2, 3', 6-trichloroindophenol and application to comparative measurements of peroxidatic catalysis [J]. Analytical Biochemistry, 1969, 27(2): 292−299. doi: 10.1016/0003-2697(69)90035-9
    [18]
    DHINDSA R S, PLUMB-DHINDSA P L, REID D M. Leaf senescence and lipid peroxidation: Effects of some phytohormones, and scavengers of free radicals and singlet oxygen [J]. Physiologia Plantarum, 1982, 56(4): 453−457. doi: 10.1111/j.1399-3054.1982.tb04539.x
    [19]
    PINHERO R G, RAO M V, et al. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings [J]. Plant Physiology, 1997, 114(2): 695−704. doi: 10.1104/pp.114.2.695
    [20]
    DUAN J J, LI J, GUO S R, et al. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance [J]. Journal of Plant Physiology, 2008, 165(15): 1620−1635. doi: 10.1016/j.jplph.2007.11.006
    [21]
    ZHAO F G, SUN C, LIU Y L, et al. Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings [J]. Acta Botanica Sinica, 2003, 45(3): 295−300.
    [22]
    SU G X, AN Z F, ZHANG W H, et al. Light promotes the synthesis of lignin through the production of H2O2 mediated by diamine oxidases in soybean hypocotyls [J]. Journal of Plant Physiology, 2005, 162(12): 1297−1303. doi: 10.1016/j.jplph.2005.04.033
    [23]
    COHEN S A, BIDLINGMEYER B A, TARVIN T L. PITC derivatives in amino acid analysis [J]. Nature, 1986, 320(6064): 769−770. doi: 10.1038/320769a0
    [24]
    STEPONKUS P L. Role of the plasma membrane in freezing injury and cold acclimation [J]. Annual Review of Plant Physiology, 1984, 35: 543−584. doi: 10.1146/annurev.pp.35.060184.002551
    [25]
    MIURA K, SHIBA H, OHTA M, et al. SlICE1 encoding a MYC-type transcription factor controls cold tolerance in tomato, Solanum lycopersicum [J]. Plant Biotechnology, 2012, 29(3): 253−260. doi: 10.5511/plantbiotechnology.12.0303a
    [26]
    DIONISIO-SESE M L, TOBITA S. Antioxidant responses of rice seedlings to salinity stress [J]. Plant Science, 1998, 135(1): 1−9. doi: 10.1016/S0168-9452(98)00025-9
    [27]
    刁倩楠, 范红伟, 张文献, 等. 外源物质对低温下甜瓜种子萌发和幼苗生理特性的影响 [J]. 分子植物育种, 2020, 18(21):7209−7216. doi: 10.13271/j.mpb.018.007209

    DIAO Q N, FAN H W, ZHANG W X, et al. Exogenous substances on seed germination, physiological characteristics of melon under chilling stress [J]. Molecular Plant Breeding, 2020, 18(21): 7209−7216.(in Chinese) doi: 10.13271/j.mpb.018.007209
    [28]
    WANG L Y, LIU J L, WANG W X, et al. Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress [J]. Photosynthetica, 2016, 54(1): 19−27. doi: 10.1007/s11099-015-0140-3
    [29]
    巩彪, 史庆华. 园艺作物褪黑素的研究进展 [J]. 中国农业科学, 2017, 50(12):2326−2337. doi: 10.3864/j.issn.0578-1752.2017.12.013

    GONG B, SHI Q H. Review of melatonin in horticultural crops [J]. Scientia Agricultura Sinica, 2017, 50(12): 2326−2337.(in Chinese) doi: 10.3864/j.issn.0578-1752.2017.12.013
    [30]
    JAHAN M S, SHU S, WANG Y, et al. Melatonin alleviates heat-induced damage of tomato seedlings by balancing redox homeostasis and modulating polyamine and nitric oxide biosynthesis [J]. BMC Plant Biology, 2019, 19(1): 414. doi: 10.1186/s12870-019-1992-7
    [31]
    ZHANG Q, LIU X F, ZHANG Z F, et al. Melatonin improved waterlogging tolerance in alfalfa (Medicago sativa) by reprogramming polyamine and ethylene metabolism [J]. Frontiers in Plant Science, 2019, 10: 44. doi: 10.3389/fpls.2019.00044
    [32]
    BRETON G, DANYLUK J, CHARRON J B F, et al. Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis [J]. Plant Physiology, 2003, 132(1): 64−74. doi: 10.1104/pp.102.015255
    [33]
    范华, 冯双庆, 赵玉梅. 黄瓜、番茄冷害以及黄瓜温度预处理与多胺的相关性 [J]. 中国农业大学学报, 1996, 1(1):108−112.

    FAN H, FENG S Q, ZHAO Y M. The correlation of polyamines with chilling injury of cucumber and tomato and the treatments for alleviating chilling injury [J]. Journal of China Agricultural University, 1996, 1(1): 108−112.(in Chinese)
    [34]
    SONG Y J, DIAO Q N, QI H Y. Putrescine enhances chilling tolerance of tomato (Lycopersicon esculentum Mill.) through modulating antioxidant systems [J]. Acta Physiologiae Plantarum, 2014, 36(11): 3013−3027. doi: 10.1007/s11738-014-1672-z
    [35]
    LIU J H, KITASHIBA H, WANG J, et al. Polyamines and their ability to provide environmental stress tolerance to plants [J]. Plant Biotechnology, 2007, 24(1): 117−126. doi: 10.5511/plantbiotechnology.24.117
    [36]
    WANG J, SUN P P, CHEN C L, et al. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis [J]. Journal of Experimental Botany, 2011, 62(8): 2899−2914. doi: 10.1093/jxb/erq463
    [37]
    计淑霞, 戴绍军, 刘炜. 植物应答低温胁迫机制的研究进展 [J]. 生命科学, 2010, 22(10):1013−1019. doi: 10.13376/j.cbls/2010.10.006

    JI S X, DAI S J, LIU W. The advances of plants in response and adaption to low temperature stress [J]. Chinese Bulletin of Life Sciences, 2010, 22(10): 1013−1019.(in Chinese) doi: 10.13376/j.cbls/2010.10.006
    [38]
    THOMASHOW M F. Role of cold-responsive genes in plant freezing tolerance [J]. Plant Physiology, 1998, 118(1): 1−8. doi: 10.1104/pp.118.1.1
    [39]
    SHI Y T, DING Y L, YANG S H. Molecular regulation of CBF signaling in cold acclimation [J]. Trends in Plant Science, 2018, 23(7): 623−637. doi: 10.1016/j.tplants.2018.04.002
    [40]
    WANG D Z, JIN Y N, DING X H, et al. Gene regulation and signal transduction in the ICE-CBF-COR signaling pathway during cold stress in plants [J]. Biochemistry Biokhimiia, 2017, 82(10): 1103−1117. doi: 10.1134/S0006297917100030
    [41]
    MA X C, CHEN C, YANG M M, et al. Cold-regulated protein (SlCOR413IM1) confers chilling stress tolerance in tomato plants [J]. Plant Physiology and Biochemistry, 2018, 124: 29−39. doi: 10.1016/j.plaphy.2018.01.003
    [42]
    WANG F, CHEN X X, DONG S J, et al. Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato [J]. Plant Biotechnology Journal, 2020, 18(4): 1041−1055. doi: 10.1111/pbi.13272
    [43]
    KOU S, CHEN L, TU W, et al. The arginine decarboxylase gene ADC1, associated to the putrescine pathway, plays an important role in potato cold-acclimated freezing tolerance as revealed by transcriptome and metabolome analyses [J]. The Plant Journal, 2018, 96(6): 1283−1298. doi: 10.1111/tpj.14126
    [44]
    KIM Y S, LEE M, LEE J H, et al. The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis [J]. Plant Molecular Biology, 2015, 89(1/2): 187−201.
    [45]
    PARK S, LEE C M, DOHERTY C J, et al. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network [J]. The Plant Journal, 2015, 82(2): 193−207. doi: 10.1111/tpj.12796
    [46]
    GILMOUR S J, FOWLER S G, THOMASHOW M F. Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities [J]. Plant Molecular Biology, 2004, 54(5): 767−781. doi: 10.1023/B:PLAN.0000040902.06881.d4
    [47]
    LI H, DING Y L, SHI Y T, et al. MPK3- and MPK6-mediated ICE1 phosphorylation negatively regulates ICE1 stability and freezing tolerance in Arabidopsis [J]. Developmental Cell, 2017, 43(5): 630−642.e4. doi: 10.1016/j.devcel.2017.09.025
    [48]
    LIU Y K, ZHOU J. MAPping kinase regulation of ICE1 in freezing tolerance [J]. Trends in Plant Science, 2018, 23(2): 91−93. doi: 10.1016/j.tplants.2017.12.002
    [49]
    RAMIREZ V E, POPPENBERGER B. MAP kinase signaling turns to ICE [J]. Developmental Cell, 2017, 43(5): 545−546. doi: 10.1016/j.devcel.2017.10.032
    [50]
    WANG L, ZHAO R R, ZHENG Y Y, et al. SlMAPK1/2/3 and antioxidant enzymes are associated with H2O 2-induced chilling tolerance in tomato plants [J]. Journal of Agricultural and Food Chemistry, 2017, 65(32): 6812−6820. doi: 10.1021/acs.jafc.7b01685
    [51]
    TAKAHASHI Y, BERBERICH T, MIYAZAKI A, et al. Spermine signalling in tobacco: Activation of mitogen-activated protein kinases by spermine is mediated through mitochondrial dysfunction [J]. The Plant Journal, 2003, 36(6): 820−829. doi: 10.1046/j.1365-313X.2003.01923.x
    [52]
    DAVLETOVA S, SCHLAUCH K, COUTU J, et al. The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis [J]. Plant Physiology, 2005, 139(2): 847−856. doi: 10.1104/pp.105.068254
    [53]
    LI C, WANG P, WEI Z W, et al. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis [J]. Journal of Pineal Research, 2012, 53(3): 298−306. doi: 10.1111/j.1600-079X.2012.00999.x
    [54]
    ZHAO Y, TAN D X, LEI Q, et al. Melatonin and its potential biological functions in the fruits of sweet cherry [J]. Journal of Pineal Research, 2013, 55(1): 79−88. doi: 10.1111/jpi.12044
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views (800) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return