• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
SHU S F, LI Y D, CAO Z S, et al. Estimation of Aboveground Rice Biomass by Unmanned Aerial Vehicle Imaging [J]. Fujian Journal of Agricultural Sciences,2022,37(7):824−832 doi: 10.19303/j.issn.1008-0384.2022.007.002
Citation: SHU S F, LI Y D, CAO Z S, et al. Estimation of Aboveground Rice Biomass by Unmanned Aerial Vehicle Imaging [J]. Fujian Journal of Agricultural Sciences,2022,37(7):824−832 doi: 10.19303/j.issn.1008-0384.2022.007.002

Estimation of Aboveground Rice Biomass by Unmanned Aerial Vehicle Imaging

doi: 10.19303/j.issn.1008-0384.2022.007.002
  • Received Date: 2022-01-08
  • Rev Recd Date: 2022-06-28
  • Available Online: 2022-08-07
  • Publish Date: 2022-07-28
  •   Objective   Feasibility of using images generated by unmanned aerial vehicle (UAV) to estimate the aboveground biomass (AGB) on a rice field was evaluated for crop production prediction.   Methods   On fields of two different varieties of rice fertilized with 4 varied nitrogen applications, AGB of rice plants at tillering, booting, and full heading stages were recorded by using the UAV imaging technology. Data on color and texture measurements were extracted from the images to correlate with corresponding AGB. A mathematic model was constructed, tested, and validated for prediction accuracy.   Result   On color, the red and blue differentiation (r-b) of the images highly correlated with the AGB; on texture, it was the G-mean. A prediction model was thus obtained for the entire growth period as y=2 544.507+5 054.243x1−145.543x2−556.553x1x2+27 379.41x12+3.927x22 , which had a correlation coefficient (R2) of 0.920 2 and a test determination coefficient of 0.911 2.   Conclusion   The prediction model based on r-b and G-mean derived from the UAV images performed satisfactorily in monitoring the AGB for the entire growth period of rice in the field. It was conceivably applicable for the farming operation and crop management.
  • loading
  • [1]
    ZHU W, SUN Z, PENG J, et al. Estimating maize above-ground biomass using 3d point clouds of multi-source unmanned aerial vehicle data at multi-spatial scales [J]. Remote Sens, 2019, 11: 2678. doi: 10.3390/rs11222678
    [2]
    田婷, 张青, 张海东, 等. 基于无人机遥感的水稻产量估测 [J]. 中国稻米, 2022, 28(1):67−71, 77.

    TIAN T, ZHANG Q, ZHANG H D. Estimating yield of rice based on remote sensing by unmanned aerial vehicle [J]. China Rice, 2022, 28(1): 67−71, 77.(in Chinese)
    [3]
    周蓉, 赵天忠, 吴发云. 基于Landsat 8遥感影像的地上生物量模型反演研究 [J]. 西北林学院学报, 2022, 37(2):186−192. doi: 10.3969/j.issn.1001-7461.2022.02.26

    ZHOU R, ZHAO T Z, WU F Y. Aboveground biomass model based on Landsat 8 remote sensing images [J]. Journal of Northwest Forestry University, 2022, 37(2): 186−192.(in Chinese) doi: 10.3969/j.issn.1001-7461.2022.02.26
    [4]
    姜妍, 王琳, 杨月, 等. 无人机高光谱成像技术在作物生长信息监测中的应用 [J]. 东北农业大学学报, 2022, 53(3):88−96.

    JIANG Y, WANG L, YANG Y, et al. Application of UAV hyperspectral imaging technology in crop growth information monitoring [J]. Journal of Northeast Agricultural University, 2022, 53(3): 88−96.(in Chinese)
    [5]
    杨福芹, 李天驰, 冯海宽, 等. 基于无人机数码影像的冬小麦氮素营养诊断研究 [J]. 福建农业学报, 2021, 36(3):369−378.

    YANG F Q, LI T C, FENG H K, et al. UAV digital image-assisted monitoring on nitrogen nutrition of winter wheat in the field [J]. Fujian Journalof Agricultural Sciences, 2021, 36(3): 369−378.(in Chinese)
    [6]
    梁胤豪, 陈全, 董彩霞, 等. 基于深度学习和无人机遥感技术的玉米雄穗检测研究 [J]. 福建农业学报, 2020, 35(4):456−464.

    LIANG Y H, CHEN Q, DONG C X, et al. Application of deep-learning and UAV for field surveying corn tassel [J]. Fujian Journal of Agricultural Sciences, 2020, 35(4): 456−464.(in Chinese)
    [7]
    YANG G J, LIU J G, ZHAO C J, et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives [J]. Frontiers in Plant Science, 2017, 8: 1111. doi: 10.3389/fpls.2017.01111
    [8]
    CASANOVA D, EPEMA G F, GOUDRIAAN J. Monitoring rice reflectance at field level for estimating biomass and LAI [J]. Field Crops Research, 1998, 55(1/2): 83−92.
    [9]
    TAKAHASHI W, NGUYEN-CONG V, KAWAGUCHI S, et al. Statistical models for prediction of dry weight and nitrogen accumulation based on visible and near-infrared hyper-spectral reflectance of rice canopies [J]. Plant Production Science, 2000, 3(4): 377−386. doi: 10.1626/pps.3.377
    [10]
    GNYP M L, MIAO Y X, YUAN F, et al. Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages [J]. Field Crops Research, 2014, 155: 42−55. doi: 10.1016/j.fcr.2013.09.023
    [11]
    王秀珍, 黄敬峰, 李云梅, 等. 水稻地上鲜生物量的高光谱遥感估算模型研究 [J]. 作物学报, 2003, 29(6):815−821. doi: 10.3321/j.issn:0496-3490.2003.06.004

    WANG X Z, HUANG J F, LI Y M, et al. Study on hyperspectral remote sensing estimation models for the ground fresh biomass of rice [J]. Acta Agronomica Sinica, 2003, 29(6): 815−821.(in Chinese) doi: 10.3321/j.issn:0496-3490.2003.06.004
    [12]
    DAI M, YANG T L, YAO Z S, et al. Wheat biomass estimation in different growth stages based on color and texture features of UAV images [J/OL]. Smart Agriculture, Published online: 2022-02-22 14: 21: 52. URL: https://kns.cnki.net/kcms/detail/10.1681.S.20220221.1425.002.html.
    [13]
    杨俊, 丁峰, 陈晨, 等. 小麦生物量及产量与无人机图像特征参数的相关性 [J]. 农业工程学报, 2019, 35(23):104−110. doi: 10.11975/j.issn.1002-6819.2019.23.013

    YANG J, DING F, CHEN C, et al. Correlation of wheat biomass and yield with UAV image characteristic parameters [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(23): 104−110.(in Chinese) doi: 10.11975/j.issn.1002-6819.2019.23.013
    [14]
    刘畅, 杨贵军, 李振海, 等. 融合无人机光谱信息与纹理信息的冬小麦生物量估测 [J]. 中国农业科学, 2018, 51(16):3060−3073. doi: 10.3864/j.issn.0578-1752.2018.16.003

    LIU C, YANG G J, LI Z H, et al. Biomass estimation in winter wheat by UAV spectral information and texture information fusion [J]. Scientia Agricultura Sinica, 2018, 51(16): 3060−3073.(in Chinese) doi: 10.3864/j.issn.0578-1752.2018.16.003
    [15]
    陈晨. 基于无人机图像的小麦生物量与产量的估测研究[D]. 扬州: 扬州大学, 2019

    CHEN C. Estimation of wheat biomass and yield based on UAV images[D]. Yangzhou: Yangzhou University, 2019. (in Chinese)
    [16]
    张建, 谢田晋, 尉晓楠, 等. 无人机多角度成像方式的饲料油菜生物量估算研究 [J]. 作物学报, 2021, 47(9):1816−1823.

    ZHANG J, XIE T J, WEI X N, et al. Estimation of feed rapeseed biomass based on multi-angle oblique imaging technique of unmanned aerial vehicle [J]. Acta Agronomica Sinica, 2021, 47(9): 1816−1823.(in Chinese)
    [17]
    刘杨, 冯海宽, 孙乾, 等. 不同分辨率无人机数码影像的马铃薯地上生物量估算研究 [J]. 光谱学与光谱分析, 2021, 41(5):1470−1476.

    LIU Y, FENG H K, SUN Q, et al. Estimation study of above ground biomass in potato based on UAV digital images with different resolutions [J]. Spectroscopy And Spectral Analysis, 2021, 41(5): 1470−1476.(in Chinese)
    [18]
    陶惠林, 徐良骥, 冯海宽, 等. 基于无人机数码影像的冬小麦株高和生物量估算 [J]. 农业工程学报, 2019, 35(19):107−116. doi: 10.11975/j.issn.1002-6819.2019.19.013

    TAO H L, XU L J, FENG H K, et al. Estimation of plant height and biomass of winter wheat based on UAV digital image [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 107−116.(in Chinese) doi: 10.11975/j.issn.1002-6819.2019.19.013
    [19]
    李艳大, 叶春, 曹中盛, 等. 基于作物生长监测诊断仪的双季稻叶片氮含量和氮积累量监测 [J]. 应用生态学报, 2020, 31(9):3040−3050. doi: 10.13287/j.1001-9332.202009.012

    LI Y D, YE C, CAO Z S, et al. Monitoring leaf nitrogen concentration and nitrogen accumulation of double cropping rice based on crop growth monitoring and diagnosis apparatus [J]. Chinese Journal of Applied Ecology, 2020, 31(9): 3040−3050.(in Chinese) doi: 10.13287/j.1001-9332.202009.012
    [20]
    叶春, 刘莹, 李艳大, 等. 基于RGB颜色空间的早稻氮素营养监测研究 [J]. 中国农业大学学报, 2020, 25(8):25−34. doi: 10.11841/j.issn.1007-4333.2020.08.03

    YE C, LIU Y, LI Y D, et al. Monitoring the nitrogen nutrition of early rice based on RGB color space [J]. Journal of China Agricultural University, 2020, 25(8): 25−34.(in Chinese) doi: 10.11841/j.issn.1007-4333.2020.08.03
    [21]
    石媛媛. 基于数字图像的水稻氮磷钾营养诊断与建模研究[D]. 杭州: 浙江大学, 2011

    SHI Y Y. Rice nutrition diagnosis and modeling based on digital image[D]. Hangzhou: Zhejiang University, 2011. (in Chinese)
    [22]
    吴华兵, 朱艳, 田永超, 等. 棉花冠层高光谱参数与叶片氮含量的定量关系 [J]. 植物生态学报, 2007, 31(5):903−909. doi: 10.17521/cjpe.2007.0114

    WU H B, ZHU Y, TIAN Y C, et al. Relationship between canopy hyperspectra parameter and leaf nitrogen concentration in cotton [J]. Journal of Plant Ecology, 2007, 31(5): 903−909.(in Chinese) doi: 10.17521/cjpe.2007.0114
    [23]
    LEE K J, LEE B W. Estimation of rice growth and nitrogen nutrition status using color digital camera image analysis [J]. European Journal of Agronomy, 2013, 48: 57−65. doi: 10.1016/j.eja.2013.02.011
    [24]
    班松涛. 水稻长势无人机遥感监测研究[D]. 杨凌: 西北农林科技大学, 2020

    BAN S T. Monitoring rice growth conditions using UAV remote sensing system[D]. Yangling: Northwest A&F University, 2020. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article Metrics

    Article views (635) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return