• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 5
May  2022
Turn off MathJax
Article Contents
GUO J Y, HONG Y H, HUANG J Q, et al. Interaction Identification between Magnaporthe oryzae Avirulence Effector Avr-PikD and Rice Protein OsDjA9 [J]. Fujian Journal of Agricultural Sciences,2022,37(5):668−674 doi: 10.19303/j.issn.1008-0384.2022.005.015
Citation: GUO J Y, HONG Y H, HUANG J Q, et al. Interaction Identification between Magnaporthe oryzae Avirulence Effector Avr-PikD and Rice Protein OsDjA9 [J]. Fujian Journal of Agricultural Sciences,2022,37(5):668−674 doi: 10.19303/j.issn.1008-0384.2022.005.015

Interaction Identification between Magnaporthe oryzae Avirulence Effector Avr-PikD and Rice Protein OsDjA9

doi: 10.19303/j.issn.1008-0384.2022.005.015
  • Received Date: 2022-03-31
  • Accepted Date: 2022-03-31
  • Rev Recd Date: 2022-04-11
  • Available Online: 2022-05-21
  • Publish Date: 2022-05-28
  •   Objective  To obtain the rice target of Magnaporthe oryzae avirulence effector Avr-PikD, the interaction between Avr-PikD and OsDjA9, one of the candidate interacting proteins screened out from a rice cDNA library, was identified.  Method   The interaction between Avr-PikD and OsDjA9 was verified by assays of yeast two-hybrid, pull-down, Co-IP, and luciferase complementation imaging along with co-localization analysis in the rice protoplasts. Specific domain in OsDjA9 involved in the interaction was determined by yeast two-hybrid assay.  Result  Avr-PikD interacts with OsDjA9 in vitro as well as in vivo. The DnaJ domain of OsDjA9 is essential for the interaction.  Conclusion  During the process of M. oryzae infecting rice, OsDjA9 is the target of the avirulence effector Avr-PikD secreted by the pathogen.
  • loading
  • [1]
    TALBOT N J. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea [J]. Annual Review of Microbiology, 2003, 57: 177−202. doi: 10.1146/annurev.micro.57.030502.090957
    [2]
    SKAMNIOTI P, GURR S J. Against the grain: Safeguarding rice from rice blast disease [J]. Trends in Biotechnology, 2009, 27(3): 141−150. doi: 10.1016/j.tibtech.2008.12.002
    [3]
    MENTLAK T A, KOMBRINK A, SHINYA T, et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease [J]. The Plant Cell, 2012, 24(1): 322−335. doi: 10.1105/tpc.111.092957
    [4]
    IRIEDA H, INOUE Y, MORI M, et al. Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases [J]. PNAS, 2019, 116(2): 496−505. doi: 10.1073/pnas.1807297116
    [5]
    WANG B H, EBBOLE D J, WANG Z H. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes [J]. Journal of Integrative Agriculture, 2017, 16(12): 2746−2760. doi: 10.1016/S2095-3119(17)61746-5
    [6]
    PARK C H, CHEN S B, SHIRSEKAR G, et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice [J]. The Plant Cell, 2012, 24(11): 4748−4762. doi: 10.1105/tpc.112.105429
    [7]
    PARK C H, SHIRSEKAR G, BELLIZZI M, et al. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice [J]. PLoS Pathogens, 2016, 12(3): e1005529. doi: 10.1371/journal.ppat.1005529
    [8]
    WANG R Y, NING Y S, SHI X T, et al. Immunity to rice blast disease by suppression of effector-triggered necrosis [J]. Current Biology, 2016, 26(18): 2399−2411. doi: 10.1016/j.cub.2016.06.072
    [9]
    TANG M Z, NING Y S, SHU X L, et al. The Nup98 homolog APIP12 targeted by the effector AvrPiz-t is involved in rice basal resistance against Magnaporthe oryzae [J]. Rice (N Y), 2017, 10(1): 5−15. doi: 10.1186/s12284-017-0144-7
    [10]
    SHI X T, LONG Y, HE F, et al. The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel [J]. PLoS Pathogens, 2018, 14(1): e1006878. doi: 10.1371/journal.ppat.1006878
    [11]
    ZHANG C Y, FANG H, SHI X T, et al. A fungal effector and a rice NLR protein have antagonistic effects on a Bowman-Birk trypsin inhibitor [J]. Plant Biotechnology Journal, 2020, 18(11): 2354−2363. doi: 10.1111/pbi.13400
    [12]
    FUJISAKI K, ABE Y, ITO A, et al. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity [J]. The Plant Journal, 2015, 83(5): 875−887. doi: 10.1111/tpj.12934
    [13]
    SINGH R, DANGOL S, CHEN Y F, et al. Magnaporthe oryzae effector AVR-pii helps to establish compatibility by inhibition of the rice NADP-malic enzyme resulting in disruption of oxidative burst and host innate immunity [J]. Molecules and Cells, 2016, 39(5): 426−438. doi: 10.14348/molcells.2016.0094
    [14]
    HAN J L, WANG X Y, WANG F P, et al. The fungal effector avr-pita suppresses innate immunity by increasing COX activity in rice mitochondria [J]. Rice (New York, N Y ), 2021, 14(1): 12.
    [15]
    ZHAI K R, LIANG D, LI H L, et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity [J]. Nature, 2022, 601(7892): 245−251. doi: 10.1038/s41586-021-04219-2
    [16]
    KANZAKI H, YOSHIDA K, SAITOH H, et al. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions [J]. The Plant Journal, 2012, 72(6): 894−907. doi: 10.1111/j.1365-313X.2012.05110.x
    [17]
    WU W H, WANG L, ZHANG S, et al. Stepwise arms race between AvrPik and Pik alleles in the rice blast pathosystem [J]. Molecular Plant Microbe Interactions, 2014, 27(8): 759−769. doi: 10.1094/MPMI-02-14-0046-R
    [18]
    ZHANG Y, SU J B, DUAN S, et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes [J]. Plant Methods, 2011, 7(1): 30. doi: 10.1186/1746-4811-7-30
    [19]
    WANG G D, CAI G H, KONG F Y, et al. Overexpression of tomato chloroplast-targeted dnaj protein enhances tolerance to drought stress and resistance to Pseudomonas solanacearum in transgenic tobacco [J]. Plant Physiology and Biochemistry, 2014, 82: 95−104. doi: 10.1016/j.plaphy.2014.05.011
    [20]
    ZHONG X H, YANG J X, SHI Y L, et al. The DnaJ protein OsDjA6 negatively regulates rice innate immunity to the blast fungus Magnaporthe oryzae [J]. Molecular Plant Pathology, 2018, 19(3): 607−614. doi: 10.1111/mpp.12546
    [21]
    FENG H J, LI C, ZHOU J L, et al. A cotton WAKL protein interacted with a DnaJ protein and was involved in defense against Verticillium dahliae [J]. International Journal of Biological Macromolecules, 2021, 167: 633−643. doi: 10.1016/j.ijbiomac.2020.11.191
    [22]
    CHEN S B, SONGKUMARN P, VENU R C, et al. Identification and characterization of in planta-expressed secreted effector proteins from Magnaporthe oryzae that induce cell death in rice [J]. Molecular Plant Microbe Interactions, 2013, 26(2): 191−202. doi: 10.1094/MPMI-05-12-0117-R
    [23]
    XU G J, ZHONG X H, SHI Y L, et al. A fungal effector targets a heat shock-dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity [J]. Science Advances, 2020, 6(48): eabb7719. doi: 10.1126/sciadv.abb7719
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (1093) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return