Citation: | GUO J Y, HONG Y H, HUANG J Q, et al. Interaction Identification between Magnaporthe oryzae Avirulence Effector Avr-PikD and Rice Protein OsDjA9 [J]. Fujian Journal of Agricultural Sciences,2022,37(5):668−674 doi: 10.19303/j.issn.1008-0384.2022.005.015 |
[1] |
TALBOT N J. On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea [J]. Annual Review of Microbiology, 2003, 57: 177−202. doi: 10.1146/annurev.micro.57.030502.090957
|
[2] |
SKAMNIOTI P, GURR S J. Against the grain: Safeguarding rice from rice blast disease [J]. Trends in Biotechnology, 2009, 27(3): 141−150. doi: 10.1016/j.tibtech.2008.12.002
|
[3] |
MENTLAK T A, KOMBRINK A, SHINYA T, et al. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease [J]. The Plant Cell, 2012, 24(1): 322−335. doi: 10.1105/tpc.111.092957
|
[4] |
IRIEDA H, INOUE Y, MORI M, et al. Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases [J]. PNAS, 2019, 116(2): 496−505. doi: 10.1073/pnas.1807297116
|
[5] |
WANG B H, EBBOLE D J, WANG Z H. The arms race between Magnaporthe oryzae and rice: Diversity and interaction of Avr and R genes [J]. Journal of Integrative Agriculture, 2017, 16(12): 2746−2760. doi: 10.1016/S2095-3119(17)61746-5
|
[6] |
PARK C H, CHEN S B, SHIRSEKAR G, et al. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice [J]. The Plant Cell, 2012, 24(11): 4748−4762. doi: 10.1105/tpc.112.105429
|
[7] |
PARK C H, SHIRSEKAR G, BELLIZZI M, et al. The E3 ligase APIP10 connects the effector AvrPiz-t to the NLR receptor Piz-t in rice [J]. PLoS Pathogens, 2016, 12(3): e1005529. doi: 10.1371/journal.ppat.1005529
|
[8] |
WANG R Y, NING Y S, SHI X T, et al. Immunity to rice blast disease by suppression of effector-triggered necrosis [J]. Current Biology, 2016, 26(18): 2399−2411. doi: 10.1016/j.cub.2016.06.072
|
[9] |
TANG M Z, NING Y S, SHU X L, et al. The Nup98 homolog APIP12 targeted by the effector AvrPiz-t is involved in rice basal resistance against Magnaporthe oryzae [J]. Rice (N Y), 2017, 10(1): 5−15. doi: 10.1186/s12284-017-0144-7
|
[10] |
SHI X T, LONG Y, HE F, et al. The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel [J]. PLoS Pathogens, 2018, 14(1): e1006878. doi: 10.1371/journal.ppat.1006878
|
[11] |
ZHANG C Y, FANG H, SHI X T, et al. A fungal effector and a rice NLR protein have antagonistic effects on a Bowman-Birk trypsin inhibitor [J]. Plant Biotechnology Journal, 2020, 18(11): 2354−2363. doi: 10.1111/pbi.13400
|
[12] |
FUJISAKI K, ABE Y, ITO A, et al. Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity [J]. The Plant Journal, 2015, 83(5): 875−887. doi: 10.1111/tpj.12934
|
[13] |
SINGH R, DANGOL S, CHEN Y F, et al. Magnaporthe oryzae effector AVR-pii helps to establish compatibility by inhibition of the rice NADP-malic enzyme resulting in disruption of oxidative burst and host innate immunity [J]. Molecules and Cells, 2016, 39(5): 426−438. doi: 10.14348/molcells.2016.0094
|
[14] |
HAN J L, WANG X Y, WANG F P, et al. The fungal effector avr-pita suppresses innate immunity by increasing COX activity in rice mitochondria [J]. Rice (New York, N Y ), 2021, 14(1): 12.
|
[15] |
ZHAI K R, LIANG D, LI H L, et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity [J]. Nature, 2022, 601(7892): 245−251. doi: 10.1038/s41586-021-04219-2
|
[16] |
KANZAKI H, YOSHIDA K, SAITOH H, et al. Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions [J]. The Plant Journal, 2012, 72(6): 894−907. doi: 10.1111/j.1365-313X.2012.05110.x
|
[17] |
WU W H, WANG L, ZHANG S, et al. Stepwise arms race between AvrPik and Pik alleles in the rice blast pathosystem [J]. Molecular Plant Microbe Interactions, 2014, 27(8): 759−769. doi: 10.1094/MPMI-02-14-0046-R
|
[18] |
ZHANG Y, SU J B, DUAN S, et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes [J]. Plant Methods, 2011, 7(1): 30. doi: 10.1186/1746-4811-7-30
|
[19] |
WANG G D, CAI G H, KONG F Y, et al. Overexpression of tomato chloroplast-targeted dnaj protein enhances tolerance to drought stress and resistance to Pseudomonas solanacearum in transgenic tobacco [J]. Plant Physiology and Biochemistry, 2014, 82: 95−104. doi: 10.1016/j.plaphy.2014.05.011
|
[20] |
ZHONG X H, YANG J X, SHI Y L, et al. The DnaJ protein OsDjA6 negatively regulates rice innate immunity to the blast fungus Magnaporthe oryzae [J]. Molecular Plant Pathology, 2018, 19(3): 607−614. doi: 10.1111/mpp.12546
|
[21] |
FENG H J, LI C, ZHOU J L, et al. A cotton WAKL protein interacted with a DnaJ protein and was involved in defense against Verticillium dahliae [J]. International Journal of Biological Macromolecules, 2021, 167: 633−643. doi: 10.1016/j.ijbiomac.2020.11.191
|
[22] |
CHEN S B, SONGKUMARN P, VENU R C, et al. Identification and characterization of in planta-expressed secreted effector proteins from Magnaporthe oryzae that induce cell death in rice [J]. Molecular Plant Microbe Interactions, 2013, 26(2): 191−202. doi: 10.1094/MPMI-05-12-0117-R
|
[23] |
XU G J, ZHONG X H, SHI Y L, et al. A fungal effector targets a heat shock-dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity [J]. Science Advances, 2020, 6(48): eabb7719. doi: 10.1126/sciadv.abb7719
|