Citation: | LI W X, YAO X Z, ZHANG B H, et al. Connection between Tea ZFP2 and Drought Resistance of Tobacco Plants [J]. Fujian Journal of Agricultural Sciences,2022,37(4):453−459 doi: 10.19303/j.issn.1008-0384.2022.004.005 |
[1] |
CROFT K D. The chemistry and biological effects of flavonoids and phenolic acidsa [J]. Annals of the New York Academy of Sciences, 1998, 854(1): 435−442.
|
[2] |
TAYLOR L P, GROTEWOLD E. Flavonoids as developmental regulators [J]. Current Opinion in Plant Biology, 2005, 8(3): 317−323. doi: 10.1016/j.pbi.2005.03.005
|
[3] |
CHAVES M M, MAROCO J P, PEREIRA J S. Understanding plant responses to drought - from genes to the whole plant [J]. Functional Plant Biology:FPB, 2003, 30(3): 239−264. doi: 10.1071/FP02076
|
[4] |
SHINOZAKI K, YAMAGUCHI-SHINOZAKI K, SEKI M. Regulatory network of gene expression in the drought and cold stress responses [J]. Current Opinion in Plant Biology, 2003, 6(5): 410−417. doi: 10.1016/S1369-5266(03)00092-X
|
[5] |
ZHU J K. Salt and drought stress signal transduction in plants [J]. Annual Review of Plant Biology, 2002, 53: 247−273. doi: 10.1146/annurev.arplant.53.091401.143329
|
[6] |
ZANG D D, WANG C, JI X Y, et al. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities [J]. Plant Science, 2015, 235: 111−121. doi: 10.1016/j.plantsci.2015.02.016
|
[7] |
CHAI G H, HU R B, ZHANG D Y, et al. Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa) [J]. BMC Genomics, 2012, 13: 253. doi: 10.1186/1471-2164-13-253
|
[8] |
陈帅. 烟草类黄酮调控及其在盐胁迫中的作用机理研究[D]. 北京: 中国农业科学院, 2020.
CHEN S. Regulation mechanism of tobacco flavonoid biosynthesis and their function in salt resistance[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese)
|
[9] |
YAMAJI N, HUANG C F, NAGAO S, et al. A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice [J]. The Plant Cell, 2009, 21(10): 3339−3349. doi: 10.1105/tpc.109.070771
|
[10] |
黄骥. 水稻非生物胁迫相关锌指蛋白基因的克隆与功能分析[D]. 南京: 南京农业大学, 2005.
HUANG J. Cloning and functional analysis of abiotic stress-related zinc finger protein genes from rice(Oryza sativa L. )[D]. Nanjing: Nanjing Agricultural University, 2005. (in Chinese)
|
[11] |
Horsch R, Fry J, Hoffmann N, et al. A simple and general method for transferring genes into plants [J]. Science, 1985, 227(4691): 1229−1231.
|
[12] |
刘洋, 姚新转, 吕立堂, 等. 高粱SbSKIP基因的克隆及其在烟草中的抗旱功能分析 [J]. 农业生物技术学报, 2016, 24(10):1500−1511.
LIU Y, YAO X Z, LV L T, et al. Cloning of SbSKIP gene from Sorghum (Sorghum bicolor) and analysis of drought-resistant function in tobacco (Nicotiana tabacum) [J]. Journal of Agricultural Biotechnology, 2016, 24(10): 1500−1511.(in Chinese)
|
[13] |
陈慧. 水稻锌指蛋白ZFP157及AWPM-19家族蛋白OsPM19L1的功能研究[D]. 南京: 南京农业大学, 2015.
CHEN H. Functional analysis of zinc finger protein ZFP157 and AWPM-19-like protein OsPM19L1 from rice(Oryza sativa L. )[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
|
[14] |
HUANG J, WANG M M, JIANG Y, et al. Expression analysis of rice A20/AN1-type zinc finger genes and characterization of ZFP177 that contributes to temperature stress tolerance [J]. Gene, 2008, 420(2): 135−144. doi: 10.1016/j.gene.2008.05.019
|
[15] |
KANG M, FOKAR M, ABDELMAGEED H, et al. Arabidopsis SAP5 functions as a positive regulator of stress responses and exhibits E3 ubiquitin ligase activity [J]. Plant Molecular Biology, 2011, 75(4/5): 451−466.
|
[16] |
齐勇, 赵德刚, 吕立堂. 茶树CsANS基因的克隆及在转基因烟草中的功能分析 [J]. 农业生物技术学报, 2019, 27(4):636−644.
QI Y, ZHAO D G, LV L T. Cloning of CsANS gene from tea plant(Camellia sinensis) and its functional analysis in transgenic tobacco(Nicotiana tabacum) [J]. Journal of Agricultural Biotechnology, 2019, 27(4): 636−644.(in Chinese)
|
[17] |
胡东杰, 张欣欣. 水稻转录因子OsNAC52、OsMYB340和OsSNAC3基因克隆、表达与定位分析 [J]. 基因组学与应用生物学, 2019, 38(10):4596−4602.
HU D J, ZHANG X X. Gene cloning, expression and localization analysis of rice transcription factors OsNAC52, OsMYB340 and OsSNAC3 [J]. Genomics and Applied Biology, 2019, 38(10): 4596−4602.(in Chinese)
|
[18] |
白戈, 杨大海, 姚恒, 等. 烟草NtSAP5基因克隆及干旱胁迫下的功能鉴定 [J]. 中国烟草学报, 2019, 25(2):74−77.
BAI G, YANG D H, YAO H, et al. Cloning of Tobacco NtSAP5 gene and functional identification under drought stress [J]. Acta Tabacaria Sinica, 2019, 25(2): 74−77.(in Chinese)
|
[19] |
代婷婷, 姚新转, 吕立堂, 等. 烟草NAC4基因的克隆及其抗旱功能分析 [J]. 农业生物技术学报, 2018, 26(5):764−773.
DAI T T, YAO X Z, LV L T, et al. Cloning and drought-resistant function analysis of NAC4 gene in tobacco(Nicotiana tabacum) [J]. Journal of Agricultural Biotechnology, 2018, 26(5): 764−773.(in Chinese)
|
[20] |
徐小艳, 姚新转, 吕立堂, 等. 烟草NtNAC1基因的克隆及其在烟草中的抗旱功能分析 [J]. 植物生理学报, 2018, 54(6):1085−1094.
XU X Y, YAO X Z, LÜ L T, et al. Cloning of NtNAC1 gene from Nicotiana tabacum and its analysis of drought-resistant function [J]. Plant Physiology Journal, 2018, 54(6): 1085−1094.(in Chinese)
|