Citation: | ZHANG J L, LINGHU Y F, DUAN S Y, et al. Prediction and Verification of sRNA SdsR Target Genes in Salmonella typhimurium [J]. Fujian Journal of Agricultural Sciences,2022,37(4):439−444 doi: 10.19303/j.issn.1008-0384.2022.004.003 |
[1] |
FRÖHLICH K S, PAPENFORT K. Regulation outside the box: New mechanisms for small RNAs [J]. Molecular Microbiology, 2020, 114(3): 363−366. doi: 10.1111/mmi.14523
|
[2] |
RYAN D, MUKHERJEE M, SUAR M. The expanding targetome of small RNAs in Salmonella Typhimurium [J]. Biochimie, 2017, 137: 69−77. doi: 10.1016/j.biochi.2017.03.005
|
[3] |
WATERS L S, STORZ G. Regulatory RNAs in bacteria [J]. Cell, 2009, 136(4): 615−628. doi: 10.1016/j.cell.2009.01.043
|
[4] |
MELAMED S, PEER A, FAIGENBAUM-ROMM R, et al. Global mapping of small RNA-target interactions in bacteria [J]. Molecular Cell, 2016, 63(5): 884−897. doi: 10.1016/j.molcel.2016.07.026
|
[5] |
BOUVIER M, SHARMA C M, MIKA F, et al. Small RNA binding to 5' mRNA coding region inhibits translational initiation [J]. Molecular Cell, 2008, 32(6): 827−837. doi: 10.1016/j.molcel.2008.10.027
|
[6] |
FRÖHLICH K S, PAPENFORT K, BERGER A A, et al. A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD [J]. Nucleic Acids Research, 2011, 40(8): 3623−3640.
|
[7] |
FRÖHLICH K S, HANEKE K, PAPENFORT K, et al. The target spectrum of SdsR small RNA in Salmonella [J]. Nucleic Acids Research, 2016, 44(21): 10406−10422.
|
[8] |
TJADEN B, GOODWIN S S, OPDYKE J A, et al. Target prediction for small, noncoding RNAs in bacteria [J]. Nucleic Acids Research, 2006, 34(9): 2791−2802. doi: 10.1093/nar/gkl356
|
[9] |
BUSCH A, RICHTER A S, BACKOFEN R. IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions [J]. Bioinformatics, 2008, 24(24): 2849−2856. doi: 10.1093/bioinformatics/btn544
|
[10] |
EGGENHOFER F, TAFER H, STADLER P F, et al. RNApredator: fast accessibility-based prediction of sRNA targets [J]. Nucleic Acids Research, 2011, 39(S2): W149−W154.
|
[11] |
KERY M B, FELDMAN M, LIVNY J, et al. TargetRNA2: identifying targets of small regulatory RNAs in bacteria [J]. Nucleic Acids Research, 2014, 42(W1): W124−W129. doi: 10.1093/nar/gku317
|
[12] |
CHOI J S, KIM W, SUK S, et al. The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli [J]. RNA Biology, 2018, 15(10): 1319−1335. doi: 10.1080/15476286.2018.1532252
|
[13] |
VOGEL J, LUISI B F. Hfq and its constellation of RNA [J]. Nature Reviews Microbiology, 2011, 9(8): 578−589. doi: 10.1038/nrmicro2615
|
[14] |
MORITA T, MAKI K, AIBA H. RNase E-based ribonucleoprotein complexes: Mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs [J]. Genes & Development, 2005, 19(18): 2176−2186.
|
[15] |
PFEIFFER V, PAPENFORT K, LUCCHINI S, et al. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation [J]. Nature Structural & Molecular Biology, 2009, 16(8): 840−846.
|
[16] |
PAPENFORT K, SAID N, WELSINK T, et al. Specific and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA [J]. Molecular Microbiology, 2009, 74(1): 139−158. doi: 10.1111/j.1365-2958.2009.06857.x
|
[17] |
PAPENFORT K, BOUVIER M, MIKA F, et al. Evidence for an autonomous 5' target recognition domain in an Hfq-associated small RNA [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47): 20435−20440. doi: 10.1073/pnas.1009784107
|
[18] |
RICE J B, VANDERPOOL C K. The small RNA SgrS controls sugar-phosphate accumulation by regulating multiple PTS genes [J]. Nucleic Acids Research, 2011, 39(9): 3806−3819. doi: 10.1093/nar/gkq1219
|
[19] |
WANG L, ELLIOTT M, ELLIOTT T. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium [J]. Journal of Bacteriology, 1999, 181(4): 1211−1219. doi: 10.1128/JB.181.4.1211-1219.1999
|
[20] |
程兴军, 刘马峰, 程安春. 革兰氏阴性菌血红素转运系统结构及功能特点 [J]. 中国生物化学与分子生物学报, 2014, 30(9):848−855.
CHENG X J, LIU M F, CHENG A C. Structural and functional properties of the heme acquisition system in gram-negative bacteria [J]. Chinese Journal of Biochemistry and Molecular Biology, 2014, 30(9): 848−855.(in Chinese)
|
[21] |
MACHADO I, GARRIDO V, HERNANDEZ L I, et al. Rapid and specific detection of Salmonella infections using chemically modified nucleic acid probes [J]. Analytica Chimica Acta, 2019, 1054: 157−166. doi: 10.1016/j.aca.2018.12.027
|