• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 37 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
CHEN Y P, HE S L, LIU Z Q, et al. Cloning and Expression of PsWRKY33 Promoter in Nane [J]. Fujian Journal of Agricultural Sciences,2022,37(2):170−177 doi: 10.19303/j.issn.1008-0384.2022.002.006
Citation: CHEN Y P, HE S L, LIU Z Q, et al. Cloning and Expression of PsWRKY33 Promoter in Nane [J]. Fujian Journal of Agricultural Sciences,2022,37(2):170−177 doi: 10.19303/j.issn.1008-0384.2022.002.006

Cloning and Expression of PsWRKY33 Promoter in Nane

doi: 10.19303/j.issn.1008-0384.2022.002.006
  • Received Date: 2021-11-21
  • Rev Recd Date: 2022-01-29
  • Publish Date: 2022-02-25
  •   Objective  Expression of PsWRKY33 promoter of Nane (Prunus salicina lindley) under stress was determined for a study on the mechanism of WRKY gene associated with the growth and stress-resistance of the plant.  Method  Unrooted phylogenetic tree representing relationships among protein sequences of PsWRKY33 was constructed using Nane and other plants through by MEGA 6.06 software. The promoter sequence was cloned by chromosome stepping technique. The cis-acting regulatory elements in the upstream promoter region at the 5′ end of PsWRKY33 were predicted according to the PlantCARE database. Transgenic plants were obtained by using the Arabidopsis immersion method. Histochemical staining and GUS enzyme activity were performed on the transgenic seedlings under different stresses.   Result  The phylogenetic tree analysis showed that the PsWRKY protein was most closely related to Arabidopsis WRKY33, thus the gene was named PsWRKY33. The 1 872 bp length of 5′ end upstream in PsWRKY33 was obtained, from Nane via genome walking technology. The promoter region contained motifs of hormones (ABRE and ARE) and biotic stresses (LTR, MYB, W-box, and other cis-acting elements). Then, the 3 5′-deletion fragments were constructed. The histochemical staining and GUS activity measurement showed that the full PsWRKY33 promoter fragment mainly expressed in leaves, petals, and peduncles, and its expression decreased with the loss of fragments. Under low temperature, the various fragments of PsWRKY33 promoter were upregulated, but downregulated under SA stress.   Conclusion  PsWRKY33 might response to low temperature and exogenous hormone SA stress in Nane.
  • loading
  • [1]
    贾丽. 福建省柰、李、桃种质资源的ISSR分子分析[D]. 福州: 福建农林大学, 2009.

    JIA L. ISSR analysis of germplasm resources of prunus[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009. (in Chinese)
    [2]
    王连延. 福建省古田县果树的霜冻灾害 [J]. 落叶果树, 2012, 44(3):48−49. doi: 10.3969/j.issn.1002-2910.2012.03.025

    WANG L Y. Frost disaster of fruit trees in Gutian County, Fujian Province [J]. Deciduous Fruits, 2012, 44(3): 48−49.(in Chinese) doi: 10.3969/j.issn.1002-2910.2012.03.025
    [3]
    ZHU J K. Abiotic stress signaling and responses in plants [J]. Cell, 2016, 167(2): 313−324. doi: 10.1016/j.cell.2016.08.029
    [4]
    钟新华. 油柰低产成因及改造技术调查 [J]. 福建果树, 1999(4):24−25.

    ZHONG X H. Investigation of genesis and transformation technology of lower yield in Oil Nai [J]. Fujian Fruits, 1999(4): 24−25.(in Chinese)
    [5]
    BANERJEE A, ROYCHOUDHURY A. WRKY proteins: Signaling and regulation of expression during abiotic stress responses [J]. The Scientific World Journal, 2015, 2015: 807560.
    [6]
    PHUKAN U J, JEENA G S, SHUKLA R K. WRKY transcription factors: Molecular regulation and stress responses in plants [J]. Frontiers in Plant Science, 2016, 7: 760.
    [7]
    JIANG J J, MA S H, YE N H, et al. WRKY transcription factors in plant responses to stresses [J]. Journal of Integrative Plant Biology, 2017, 59(2): 86−101. doi: 10.1111/jipb.12513
    [8]
    相立, 赵蕾, 王玫, 等. 苹果MdWRKY74的克隆和功能分析[J/OL]. 园艺学报, 2021: 1-11 [2021-05-18]. http://kns.cnki.net/kcms/detail/11.1924.s.20210518.1046.002.html.

    XIANG L, ZHAO L, WANG M, et al. Cloning and functional analysis of MdWRKY74 in apple [J/OL]. Acta Horticulturae Sinica, 2021: 1-11. [2021-05-18]. http://kns.cnki.net/kcms/detail/11.1924.s.20210518.1046.002.html. (in Chinese)
    [9]
    LI S J, FU Q T, CHEN L G, et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance [J]. Planta, 2011, 233(6): 1237−1252. doi: 10.1007/s00425-011-1375-2
    [10]
    HE G H, XU J Y, WANG Y X, et al. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis [J]. BMC Plant Biology, 2016, 16(1): 116. doi: 10.1186/s12870-016-0806-4
    [11]
    LI Z, LIANG F P, ZHANG T B, et al. Enhanced tolerance to drought stress resulting from Caragana korshinskii CkWRKY33 in transgenic Arabidopsis thaliana [J]. BMC Genomic Data, 2021, 22(1): 11. doi: 10.1186/s12863-021-00965-4
    [12]
    张锦锦. MsWRKY33转录因子调控紫花苜蓿耐盐性的功能研究[D]. 北京: 中国农业科学院, 2021.

    ZHANG J J. The study on the function of MsWRKY33 transcription factor in regulating salt tolerance of Medicago sativa. L[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese)
    [13]
    SUN X M, ZHANG L L, WONG D C J, et al. The ethylene response factor VaERF092 from Amur grape regulates the transcription factor VaWRKY33, improving cold tolerance [J]. The Plant Journal:for Cell and Molecular Biology, 2019, 99(5): 988−1002.
    [14]
    陈永萍, 林金辉, 刘志钦, 等. 油柰PsWRKY22基因启动子的克隆与功能鉴定 [J]. 分子植物育种, 2021, 19(9):2837−2845.

    CHEN Y P, LIN J H, LIU Z Q, et al. Cloning and functional identification of promoter of PsWRKY22 gene in Nai [J]. Molecular Plant Breeding, 2021, 19(9): 2837−2845.(in Chinese)
    [15]
    蒋琦, 高广春, 吴霁蓂, 等. WRKY转录因子调控植物次生代谢的研究进展[J/OL]. 分子植物育种, 2021: 1-8 [2021-12-03]. http://kns.cnki.net/kcms/detail/46.1068.S.20211201.1439.006.html.

    JIANG Q, GAO G C, WU J M, et al. Research progress of WRKY transcription factor regulating plant secondary metabolism [J/OL]. Molecular Plant Breeding, 2021: 1-8 [2021-12-03]. http://kns.cnki.net/kcms/detail/46.1068.S.20211201.1439.006.html. (in Chinese)
    [16]
    张凡, 尹俊龙, 郭瑛琪, 等. WRKY转录因子的研究进展 [J]. 生物技术通报, 2018, 34(1):40−48.

    ZHANG F, YIN J L, GUO Y Q, et al. Research advances on WRKY transcription factors [J]. Biotechnology Bulletin, 2018, 34(1): 40−48.(in Chinese)
    [17]
    王雪, 王盛昊, 于冰. 转录因子和启动子互作分析技术及其在植物应答逆境胁迫中的研究进展 [J]. 中国农学通报, 2021, 37(33):112−119. doi: 10.11924/j.issn.1000-6850.casb2021-0563

    WANG X, WANG S H, YU B. Interaction analysis of transcription factors and promoters and its application in response of plants to stress [J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 112−119.(in Chinese) doi: 10.11924/j.issn.1000-6850.casb2021-0563
    [18]
    杨晓娜, 赵昶灵, 李云, 等. 启动子序列克隆和功能分析方法的研究进展 [J]. 云南农业大学学报(自然科学版), 2010, 25(2):283−290.

    YANG X N, ZHAO C L, LI Y, et al. Research advances in the methods of cloning and function-analyzing of promoters [J]. Journal of Yunnan Agricultural University (Natural Science), 2010, 25(2): 283−290.(in Chinese)
    [19]
    蔡韡韡. 水杨酸诱导下(木奈)抗性相关基因的分离与表达研究[D]. 福州: 福建农林大学, 2016.

    CAI W W. Isolation and expression of resistance-associated genes under induction of salicylic acid in (Prunus salicina lindli. var cordata J. Y. Zhang et al.)[D]. Fuzhou: Fujian Agriculture and Forestry University, 2016. (in Chinese)
    [20]
    高永峰, 杨丰铭, 李琴中, 等. 番茄SlWRKY31基因启动子的克隆与逆境应答模式分析 [J]. 西北植物学报, 2018, 38(12):2155−2164.

    GAO Y F, YANG F M, LI Q Z, et al. Cloning and analysis of stress response pattern of SlWRKY31 gene promoter from tomato [J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(12): 2155−2164.(in Chinese)
    [21]
    刘志钦, 杨晟, 蔡金森, 等. 辣椒CaWRKY5启动子的分离及其调控元件分析 [J]. 应用与环境生物学报, 2013, 19(3):389−394. doi: 10.3724/SP.J.1145.2013.00389

    LIU Z Q, YANG S, CAI J S, et al. Isolation and Cis-acting analysis of the CaWRKY5 promoter in pepper [J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(3): 389−394.(in Chinese) doi: 10.3724/SP.J.1145.2013.00389
    [22]
    杨鹏芳, 段国琴, 胡晓炜, 等. 高等植物启动子研究概述 [J]. 分子植物育种, 2018, 16(5):1482−1493.

    YANG P F, DUAN G Q, HU X W, et al. Overview of higher plant promoters research [J]. Molecular Plant Breeding, 2018, 16(5): 1482−1493.(in Chinese)
    [23]
    JUNG H W, KIM K D, HWANG B K. Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses [J]. Planta, 2005, 221(3): 361−373. doi: 10.1007/s00425-004-1461-9
    [24]
    RUSHTON P J, REINSTÄDLER A, LIPKA V, et al. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling [J]. The Plant Cell, 2002, 14(4): 749−762. doi: 10.1105/tpc.010412
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (557) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return