Citation: | ZHENG M X, XIAO R F, CHEN M C, et al. Effect of Drying Methods on Rehydration of Bacterial Cellulose [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1499−1505 doi: 10.19303/j.issn.1008-0384.2021.12.015 |
[1] |
YANG Y, JIA J J, XING J R, et al. Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26 [J]. Carbohydrate Polymers, 2013, 92(2): 2012−2017. doi: 10.1016/j.carbpol.2012.11.065
|
[2] |
冯劲, 施庆珊, 冯静, 等. 不同干燥方式对细菌纤维素物理性能的影响 [J]. 现代食品科技, 2013, 29(9):2225−2229,2101.
FENG J, SHI Q S, FENG J, et al. Effects of different drying processes on physical properties of bacterial cellulose membranes [J]. Modern Food Science and Technology, 2013, 29(9): 2225−2229,2101.(in Chinese)
|
[3] |
杨晨, 崔秋艳, 郑裕东, 等. 纳米细菌纤维素的不同脱水过程对结构性能的影响及再吸水动力学[J]. 高分子材料科学与工程, 2013, 29(10): 50-54
YANG C, CUI Q Y, ZHENG Y D, et al. Effect of different dehydration methods on structure and property of nano bacterial cellulose and dynamics analysis of their water reabsorption[J]. Polymer Materials Science & Engineering, 2013, 29(10): 50-54. (in Chinese)
|
[4] |
MIKKELSEN D, FLANAGAN B M, DYKES G A, et al. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524 [J]. Journal of Applied Microbiology, 2009, 107(2): 576−583. doi: 10.1111/j.1365-2672.2009.04226.x
|
[5] |
MACHADO R T A, GUTIERREZ J, TERCJAK A, et al. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production [J]. Carbohydrate Polymers, 2016, 152: 841−849. doi: 10.1016/j.carbpol.2016.06.049
|
[6] |
LAUS M C, VAN BRUSSEL A A N, KIJNE J W. Role of cellulose fibrils and exopolysaccharides of Rhizobium leguminosarum in attachment to and infection of Vicia sativa root hairs [J]. Molecular Plant-Microbe Interactions®, 2005, 18(6): 533−538.
|
[7] |
MATTHYSSE A G, THOMAS D L, WHITE A R. Mechanism of cellulose synthesis in Agrobacterium tumefaciens [J]. Journal of Bacteriology, 1995, 177(4): 1076−1081. doi: 10.1128/jb.177.4.1076-1081.1995
|
[8] |
LIN D H, LIU Z, SHEN R, et al. Bacterial cellulose in food industry: Current research and future prospects [J]. International Journal of Biological Macromolecules, 2020, 158: 1007−1019. doi: 10.1016/j.ijbiomac.2020.04.230
|
[9] |
周伶俐, 孙东平, 吴清杭, 等. 不同培养方式对细菌纤维素产量和结构性质的影响 [J]. 微生物学报, 2007, 47(5):914−917. doi: 10.3321/j.issn:0001-6209.2007.05.032
ZHOU L L, SUN D P, WU Q H, et al. Influence of culture mode on bacterial cellulose production and its structure and property [J]. Acta Microbiologica Sinica, 2007, 47(5): 914−917.(in Chinese) doi: 10.3321/j.issn:0001-6209.2007.05.032
|
[10] |
张少瑞, 陈琳, 钟春燕, 等. 木葡糖酸醋杆菌株型对细菌纤维素产量与性能的影响 [J]. 生物过程, 2016, 6(1):8−16. doi: 10.12677/BP.2016.61002
ZHANG S R, CHEN L, ZHONG C Y, et al. Effects of different Gluconacetobacter xylinus strains on yield and properties of bacterial cellulose [J]. Bioprocess, 2016, 6(1): 8−16.(in Chinese) doi: 10.12677/BP.2016.61002
|
[11] |
罗仓学, 张岢薇, 丁勇. 干燥方法对细菌纤维素复水性能的影响[J]. 陕西科技大学学报, 2017, 35(6): 120-124, 139
LUO C X, ZHANG K W, DING Y. Influence of drying methods on rehydration quality of bacterial cellulose[J]. Journal of Shaanxi University of Science & Technology, 2017, 35(6): 120-124, 139. (in Chinese)
|
[12] |
陈建福, 汪少芸, 林梅西. 海鲜菇热风干燥特性及其动力学研究 [J]. 食品工业科技, 2020, 41(3):69−73.
CHEN J F, WANG S Y, LIN M X. Hot air drying characteristics and kinetics of Hypsizygus marmoreus [J]. Science and Technology of Food Industry, 2020, 41(3): 69−73.(in Chinese)
|
[13] |
张增帅, 张宝善, 罗喻红, 等. 食品微波真空干燥研究进展 [J]. 食品工业科技, 2012, 33(23):393−397.
ZHANG Z S, ZHANG B S, LUO Y H, et al. Research progress of microwave vacuum drying of food [J]. Science and Technology of Food Industry, 2012, 33(23): 393−397.(in Chinese)
|
[14] |
郭雷. 真空冷冻干燥技术在我国农产品加工中的应用 [J]. 现代农业科技, 2020(3):219−220. doi: 10.3969/j.issn.1007-5739.2020.03.130
GUO L. Application of vacuum freeze drying technology in agricultural products processing in China [J]. Modern Agricultural Science and Technology, 2020(3): 219−220.(in Chinese) doi: 10.3969/j.issn.1007-5739.2020.03.130
|
[15] |
LIN S B, HSU C P, CHEN L C, et al. Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose [J]. Food Hydrocolloids, 2009, 23(8): 2195−2203. doi: 10.1016/j.foodhyd.2009.05.011
|
[16] |
CHEN H H, LIN S B, HSU C P, et al. Modifying bacterial cellulose with gelatin peptides for improved rehydration [J]. Cellulose, 2013, 20(4): 1967−1977. doi: 10.1007/s10570-013-9931-5
|
[17] |
丁勇, 邵明亮, 罗仓学, 等. 热风-冷冻复式干燥细菌纤维素工艺研究 [J]. 食品科技, 2016, 41(10):228−233.
DING Y, SHAO M L, LUO C X, et al. Drying processes of bacteria cellulose by combined with hot air and freezing [J]. Food Science and Technology, 2016, 41(10): 228−233.(in Chinese)
|
[18] |
章斌, 丁心, 侯小桢, 等. 柠檬片的低温冻结与真空冷冻干燥工艺研究 [J]. 食品研究与开发, 2015, 36(22):86−90. doi: 10.3969/j.issn.1005-6521.2015.22.022
ZHANG B, DING X, HOU X Z, et al. Research on the processing technology of freezing and vacuum drying of lemon slices [J]. Food Research and Development, 2015, 36(22): 86−90.(in Chinese) doi: 10.3969/j.issn.1005-6521.2015.22.022
|
[19] |
GEORGE J, SAJEEVKUMAR V A, KUMAR R, et al. Enhancement of thermal stability associated with the chemical treatment of bacterial (Gluconacetobacter xylinus) cellulose [J]. Journal of Applied Polymer Science, 2008, 108(3): 1845−1851. doi: 10.1002/app.27802
|
[20] |
赵莹婷, 王为为, 庄玮婧, 等. 莲子微波真空干燥特性及其微观结构的分形特征 [J]. 现代食品科技, 2016, 32(8):213−218.
ZHAO Y T, WANG W W, ZHUANG W J, et al. Microwave vacuum drying characteristics of Lotus seeds and the fractal characteristics of their microstructures [J]. Modern Food Science and Technology, 2016, 32(8): 213−218.(in Chinese)
|
[21] |
李瑜, 许时婴. 大蒜干燥工艺的研究 [J]. 食品与发酵工业, 2004, 30(6):54−58. doi: 10.3321/j.issn:0253-990X.2004.06.013
LI Y, XU S Y. Study on the technology of drying garlic [J]. Food and Fermentation Industries, 2004, 30(6): 54−58.(in Chinese) doi: 10.3321/j.issn:0253-990X.2004.06.013
|
[22] |
WAN Y Z, LUO H L, HE F, et al. Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites [J]. Composites Science and Technology, 2009, 69(7/8): 1212−1217.
|
[23] |
HOSSEINI H, KOKABI M, MOUSAVI S M. Dynamic mechanical properties of bacterial cellulose nanofibres [J]. Iranian Polymer Journal, 2018, 27(6): 433−443. doi: 10.1007/s13726-018-0621-x
|
[24] |
PAVALOIU R D, STOICA-GUZUN A, DOBRE T. Swelling studies of composite hydrogels based on bacterial cellulose and gelatin [J]. U. P. B. Sci. Bull. , Series B, 2015, 77(1): 53−62.
|