• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 36 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
ZHENG M X, XIAO R F, CHEN M C, et al. Effect of Drying Methods on Rehydration of Bacterial Cellulose [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1499−1505 doi: 10.19303/j.issn.1008-0384.2021.12.015
Citation: ZHENG M X, XIAO R F, CHEN M C, et al. Effect of Drying Methods on Rehydration of Bacterial Cellulose [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1499−1505 doi: 10.19303/j.issn.1008-0384.2021.12.015

Effect of Drying Methods on Rehydration of Bacterial Cellulose

doi: 10.19303/j.issn.1008-0384.2021.12.015
  • Received Date: 2021-04-21
  • Rev Recd Date: 2021-08-09
  • Available Online: 2021-12-30
  • Publish Date: 2021-12-28
  •   Objective  Effects of drying methods on rehydration property of bacterial cellulose (BC) were investigated.  Method  BC samples dried by means of hot air, microwave under vacuum, and freeze-drying were compared on the swelling and reconstitution rates upon rehydration. A scanning electron microscope (SEM) was used to observe and characterize the BC microstructure.  Result  The varied dehydration processes affected the microstructure and rehydration of the dried BC. Among the untreated control and treated samples, the freeze-dried BC displayed the highest rehydration rate of 44.79%. It was followed by the hot air and the microwave-vacuum dried specimens. The SEM images showed the freeze-drying rendered BC with a loose but well-defined fibrous network, while the other two methods produced a tight structure with clusters. Insofar as hygroscopic property is concerned, freeze-drying BC at −80 ℃ was superior to all other methods. The dynamics of the water adsorption and swelling of BC followed the Fickian diffusion law. A better maintained 3D structure would have greater diffusion coefficient, and therefore, more efficient water absorption for the dried BC when water was added.   Conclusion   The freeze-dried BC could be rehydrated most desirably among all tested samples. The processing technology was recommended for the dehydration.
  • loading
  • [1]
    YANG Y, JIA J J, XING J R, et al. Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26 [J]. Carbohydrate Polymers, 2013, 92(2): 2012−2017. doi: 10.1016/j.carbpol.2012.11.065
    [2]
    冯劲, 施庆珊, 冯静, 等. 不同干燥方式对细菌纤维素物理性能的影响 [J]. 现代食品科技, 2013, 29(9):2225−2229,2101.

    FENG J, SHI Q S, FENG J, et al. Effects of different drying processes on physical properties of bacterial cellulose membranes [J]. Modern Food Science and Technology, 2013, 29(9): 2225−2229,2101.(in Chinese)
    [3]
    杨晨, 崔秋艳, 郑裕东, 等. 纳米细菌纤维素的不同脱水过程对结构性能的影响及再吸水动力学[J]. 高分子材料科学与工程, 2013, 29(10): 50-54

    YANG C, CUI Q Y, ZHENG Y D, et al. Effect of different dehydration methods on structure and property of nano bacterial cellulose and dynamics analysis of their water reabsorption[J]. Polymer Materials Science & Engineering, 2013, 29(10): 50-54. (in Chinese)
    [4]
    MIKKELSEN D, FLANAGAN B M, DYKES G A, et al. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524 [J]. Journal of Applied Microbiology, 2009, 107(2): 576−583. doi: 10.1111/j.1365-2672.2009.04226.x
    [5]
    MACHADO R T A, GUTIERREZ J, TERCJAK A, et al. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production [J]. Carbohydrate Polymers, 2016, 152: 841−849. doi: 10.1016/j.carbpol.2016.06.049
    [6]
    LAUS M C, VAN BRUSSEL A A N, KIJNE J W. Role of cellulose fibrils and exopolysaccharides of Rhizobium leguminosarum in attachment to and infection of Vicia sativa root hairs [J]. Molecular Plant-Microbe Interactions®, 2005, 18(6): 533−538.
    [7]
    MATTHYSSE A G, THOMAS D L, WHITE A R. Mechanism of cellulose synthesis in Agrobacterium tumefaciens [J]. Journal of Bacteriology, 1995, 177(4): 1076−1081. doi: 10.1128/jb.177.4.1076-1081.1995
    [8]
    LIN D H, LIU Z, SHEN R, et al. Bacterial cellulose in food industry: Current research and future prospects [J]. International Journal of Biological Macromolecules, 2020, 158: 1007−1019. doi: 10.1016/j.ijbiomac.2020.04.230
    [9]
    周伶俐, 孙东平, 吴清杭, 等. 不同培养方式对细菌纤维素产量和结构性质的影响 [J]. 微生物学报, 2007, 47(5):914−917. doi: 10.3321/j.issn:0001-6209.2007.05.032

    ZHOU L L, SUN D P, WU Q H, et al. Influence of culture mode on bacterial cellulose production and its structure and property [J]. Acta Microbiologica Sinica, 2007, 47(5): 914−917.(in Chinese) doi: 10.3321/j.issn:0001-6209.2007.05.032
    [10]
    张少瑞, 陈琳, 钟春燕, 等. 木葡糖酸醋杆菌株型对细菌纤维素产量与性能的影响 [J]. 生物过程, 2016, 6(1):8−16. doi: 10.12677/BP.2016.61002

    ZHANG S R, CHEN L, ZHONG C Y, et al. Effects of different Gluconacetobacter xylinus strains on yield and properties of bacterial cellulose [J]. Bioprocess, 2016, 6(1): 8−16.(in Chinese) doi: 10.12677/BP.2016.61002
    [11]
    罗仓学, 张岢薇, 丁勇. 干燥方法对细菌纤维素复水性能的影响[J]. 陕西科技大学学报, 2017, 35(6): 120-124, 139

    LUO C X, ZHANG K W, DING Y. Influence of drying methods on rehydration quality of bacterial cellulose[J]. Journal of Shaanxi University of Science & Technology, 2017, 35(6): 120-124, 139. (in Chinese)
    [12]
    陈建福, 汪少芸, 林梅西. 海鲜菇热风干燥特性及其动力学研究 [J]. 食品工业科技, 2020, 41(3):69−73.

    CHEN J F, WANG S Y, LIN M X. Hot air drying characteristics and kinetics of Hypsizygus marmoreus [J]. Science and Technology of Food Industry, 2020, 41(3): 69−73.(in Chinese)
    [13]
    张增帅, 张宝善, 罗喻红, 等. 食品微波真空干燥研究进展 [J]. 食品工业科技, 2012, 33(23):393−397.

    ZHANG Z S, ZHANG B S, LUO Y H, et al. Research progress of microwave vacuum drying of food [J]. Science and Technology of Food Industry, 2012, 33(23): 393−397.(in Chinese)
    [14]
    郭雷. 真空冷冻干燥技术在我国农产品加工中的应用 [J]. 现代农业科技, 2020(3):219−220. doi: 10.3969/j.issn.1007-5739.2020.03.130

    GUO L. Application of vacuum freeze drying technology in agricultural products processing in China [J]. Modern Agricultural Science and Technology, 2020(3): 219−220.(in Chinese) doi: 10.3969/j.issn.1007-5739.2020.03.130
    [15]
    LIN S B, HSU C P, CHEN L C, et al. Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose [J]. Food Hydrocolloids, 2009, 23(8): 2195−2203. doi: 10.1016/j.foodhyd.2009.05.011
    [16]
    CHEN H H, LIN S B, HSU C P, et al. Modifying bacterial cellulose with gelatin peptides for improved rehydration [J]. Cellulose, 2013, 20(4): 1967−1977. doi: 10.1007/s10570-013-9931-5
    [17]
    丁勇, 邵明亮, 罗仓学, 等. 热风-冷冻复式干燥细菌纤维素工艺研究 [J]. 食品科技, 2016, 41(10):228−233.

    DING Y, SHAO M L, LUO C X, et al. Drying processes of bacteria cellulose by combined with hot air and freezing [J]. Food Science and Technology, 2016, 41(10): 228−233.(in Chinese)
    [18]
    章斌, 丁心, 侯小桢, 等. 柠檬片的低温冻结与真空冷冻干燥工艺研究 [J]. 食品研究与开发, 2015, 36(22):86−90. doi: 10.3969/j.issn.1005-6521.2015.22.022

    ZHANG B, DING X, HOU X Z, et al. Research on the processing technology of freezing and vacuum drying of lemon slices [J]. Food Research and Development, 2015, 36(22): 86−90.(in Chinese) doi: 10.3969/j.issn.1005-6521.2015.22.022
    [19]
    GEORGE J, SAJEEVKUMAR V A, KUMAR R, et al. Enhancement of thermal stability associated with the chemical treatment of bacterial (Gluconacetobacter xylinus) cellulose [J]. Journal of Applied Polymer Science, 2008, 108(3): 1845−1851. doi: 10.1002/app.27802
    [20]
    赵莹婷, 王为为, 庄玮婧, 等. 莲子微波真空干燥特性及其微观结构的分形特征 [J]. 现代食品科技, 2016, 32(8):213−218.

    ZHAO Y T, WANG W W, ZHUANG W J, et al. Microwave vacuum drying characteristics of Lotus seeds and the fractal characteristics of their microstructures [J]. Modern Food Science and Technology, 2016, 32(8): 213−218.(in Chinese)
    [21]
    李瑜, 许时婴. 大蒜干燥工艺的研究 [J]. 食品与发酵工业, 2004, 30(6):54−58. doi: 10.3321/j.issn:0253-990X.2004.06.013

    LI Y, XU S Y. Study on the technology of drying garlic [J]. Food and Fermentation Industries, 2004, 30(6): 54−58.(in Chinese) doi: 10.3321/j.issn:0253-990X.2004.06.013
    [22]
    WAN Y Z, LUO H L, HE F, et al. Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites [J]. Composites Science and Technology, 2009, 69(7/8): 1212−1217.
    [23]
    HOSSEINI H, KOKABI M, MOUSAVI S M. Dynamic mechanical properties of bacterial cellulose nanofibres [J]. Iranian Polymer Journal, 2018, 27(6): 433−443. doi: 10.1007/s13726-018-0621-x
    [24]
    PAVALOIU R D, STOICA-GUZUN A, DOBRE T. Swelling studies of composite hydrogels based on bacterial cellulose and gelatin [J]. U. P. B. Sci. Bull. , Series B, 2015, 77(1): 53−62.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (583) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return