Citation: | SUN Y X, CHEN Y F, JIN X J, et al. AI Differentiation of Bok Choy Seedlings from Weeds [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1484−1490 doi: 10.19303/j.issn.1008-0384.2021.12.013 |
[1] |
陈桂芬, 马丽, 陈航. 精准施肥技术的研究现状与发展趋势 [J]. 吉林农业大学学报, 2013, 35(3):253−259.
CHEN G F, MA L, CHEN H. Research status and development trend of precision fertilization technology [J]. Journal of Jilin Agricultural University, 2013, 35(3): 253−259.(in Chinese)
|
[2] |
LANINI W T, STRANGE M L. Low-input management of weeds in vegetable fields [J]. California Agriculture, 1991, 45(1): 11−13. doi: 10.3733/ca.v045n01p11
|
[3] |
金月, 肖宏儒, 曹光乔, 等. 我国叶类蔬菜机械化水平现状与评价方法研究 [J]. 中国农机化学报, 2020, 41(12):196−201.
JIN Y, XIAO H R, CAO G Q, et al. Research on status and evaluation methods of leafy vegetable mechanization production level in China [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(12): 196−201.(in Chinese)
|
[4] |
洪晓玮, 陈勇, 杨超淞, 等. 有机蔬菜大棚除草机器人研制 [J]. 制造业自动化, 2021, 43(5):33−36, 71. doi: 10.3969/j.issn.1009-0134.2021.05.008
HONG X W, CHEN Y, YANG C S, et al. Development of a weeding robot for organic vegetable greenhouse [J]. Manufacturing Automation, 2021, 43(5): 33−36, 71.(in Chinese) doi: 10.3969/j.issn.1009-0134.2021.05.008
|
[5] |
金小俊, 陈勇, 孙艳霞. 农田杂草识别方法研究进展 [J]. 农机化研究, 2011, 33(7):23−27, 33. doi: 10.3969/j.issn.1003-188X.2011.07.005
JIN X J, CHEN Y, SUN Y X. Research advances of weed identification in agricultural fields [J]. Journal of Agricultural Mechanization Research, 2011, 33(7): 23−27, 33.(in Chinese) doi: 10.3969/j.issn.1003-188X.2011.07.005
|
[6] |
毛文华, 张银桥, 王辉, 等. 杂草信息实时获取技术与设备研究进展 [J]. 农业机械学报, 2013, 44(1):190−195. doi: 10.6041/j.issn.1000-1298.2013.01.036
MAO W H, ZHANG Y Q, WANG H, et al. Advance techniques and equipments for real-time weed detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(1): 190−195.(in Chinese) doi: 10.6041/j.issn.1000-1298.2013.01.036
|
[7] |
王璨, 武新慧, 张燕青, 等. 基于双注意力语义分割网络的田间苗期玉米识别与分割 [J]. 农业工程学报, 2021, 37(9):211−221. doi: 10.11975/j.issn.1002-6819.2021.09.024
WANG C, WU X H, ZHANG Y Q, et al. Recognition and segmentation of maize seedlings in field based on dual attention semantic segmentation network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 211−221.(in Chinese) doi: 10.11975/j.issn.1002-6819.2021.09.024
|
[8] |
樊湘鹏, 周建平, 许燕, 等. 基于优化faster R-CNN的棉花苗期杂草识别与定位 [J]. 农业机械学报, 2021, 52(5):26−34. doi: 10.6041/j.issn.1000-1298.2021.05.003
FAN X P, ZHOU J P, XU Y, et al. Identification and localization of weeds based on optimized faster R-CNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26−34.(in Chinese) doi: 10.6041/j.issn.1000-1298.2021.05.003
|
[9] |
许燕, 温德圣, 周建平, 等. 基于faster R-CNN的新疆棉花幼苗与杂草识别方法 [J]. 排灌机械工程学报, 2021, 39(6):602−607.
XU Y, WEN D S, ZHOU J P, et al. Identification method of cotton seedlings and weeds in Xinjiang based on faster R-CNN [J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(6): 602−607.(in Chinese)
|
[10] |
徐涛, 陈勇, 周卫鹏. 基于三维点云的蔬菜大棚杂草识别方法 [J]. 北方园艺, 2021(2):153−158.
XU T, CHEN Y, ZHOU W P. A weed identification method in vegetable greenhouses based on three-dimensional point cloud [J]. Northern Horticulture, 2021(2): 153−158.(in Chinese)
|
[11] |
OSORIO K, PUERTO A, PEDRAZA C, et al. A deep learning approach for weed detection in lettuce crops using multispectral images [J]. AgriEngineering, 2020, 2(3): 471−488. doi: 10.3390/agriengineering2030032
|
[12] |
TANG L, TIAN L, STEWARD B L. Color image segmentation with genetic algorithm for in-field weed sensing [J]. Transactions of the ASAE, 2000, 43(4): 1019−1027. doi: 10.13031/2013.2970
|
[13] |
HERRERA P, DORADO J, RIBEIRO Á. A novel approach for weed type classification based on shape descriptors and a fuzzy decision-making method [J]. Sensors, 2014, 14(8): 15304−15324. doi: 10.3390/s140815304
|
[14] |
BAKHSHIPOUR A, JAFARI A, NASSIRI S M, et al. Weed segmentation using texture features extracted from wavelet sub-images [J]. Biosystems Engineering, 2017, 157: 1−12. doi: 10.1016/j.biosystemseng.2017.02.002
|
[15] |
JIANG H Z, JIANG X S, RU Y, et al. Application of hyperspectral imaging for detecting and visualizing leaf lard adulteration in minced pork [J]. Infrared Physics & Technology, 2020, 110: 103467.
|
[16] |
仇裕淇, 黄振楠, 阮昭, 等. 机器视觉技术在农业生产智能化中的应用综述 [J]. 机械研究与应用, 2019, 32(2):202−206.
QIU Y Q, HUANG Z N, RUAN Z, et al. Review on application of machine vision in intelligent agricultural production [J]. Mechanical Research & Application, 2019, 32(2): 202−206.(in Chinese)
|
[17] |
LIAKOS K, BUSATO P, MOSHOU D, et al. Machine learning in agriculture: A review [J]. Sensors, 2018, 18(8): 2674. doi: 10.3390/s18082674
|
[18] |
WANG A C, ZHANG W, WEI X H. A review on weed detection using ground-based machine vision and image processing techniques [J]. Computers and Electronics in Agriculture, 2019, 158: 226−240. doi: 10.1016/j.compag.2019.02.005
|
[19] |
SHI J H, LI Z Y, ZHU T T, et al. Defect detection of industry wood veneer based on NAS and multi-channel mask R-CNN [J]. Sensors, 2020, 20(16): 4398. doi: 10.3390/s20164398
|
[20] |
邓向武, 马旭, 齐龙, 等. 基于卷积神经网络与迁移学习的稻田苗期杂草识别 [J]. 农机化研究, 2021, 43(10):167−171. doi: 10.3969/j.issn.1003-188X.2021.10.030
DENG X W, MA X, QI L, et al. Recognition of weeds at seedling stage in paddy fields using convolutional neural network and transfer learning [J]. Journal of Agricultural Mechanization Research, 2021, 43(10): 167−171.(in Chinese) doi: 10.3969/j.issn.1003-188X.2021.10.030
|
[21] |
YU J L, SCHUMANN A W, SHARPE S M, et al. Detection of grassy weeds in bermudagrass with deep convolutional neural networks [J]. Weed Science, 2020, 68(5): 545−552. doi: 10.1017/wsc.2020.46
|
[22] |
HASAN A S M M, SOHEL F, DIEPEVEEN D, et al. A survey of deep learning techniques for weed detection from images [J]. Computers and Electronics in Agriculture, 2021, 184: 106067. doi: 10.1016/j.compag.2021.106067
|
[23] |
刘天真, 滕桂法, 苑迎春, 等. 基于改进YOLO v3的自然场景下冬枣果实识别方法 [J]. 农业机械学报, 2021, 52(5):17−25. doi: 10.6041/j.issn.1000-1298.2021.05.002
LIU T Z, TENG G F, YUAN Y C, et al. Winter jujube fruit recognition method based on improved YOLO v3 under natural scene [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 17−25.(in Chinese) doi: 10.6041/j.issn.1000-1298.2021.05.002
|
[24] |
WOEBBECKE D M, MEYER G E, BARGEN K V, et al. Color indices for weed identification under various soil, residue, and lighting conditions [J]. Transactions of the ASAE, 1995, 38(1): 259−269. doi: 10.13031/2013.27838
|
[25] |
GÉE C, BOSSU J, JONES G, et al. Crop/weed discrimination in perspective agronomic images [J]. Computers and Electronics in Agriculture, 2008, 60(1): 49−59. doi: 10.1016/j.compag.2007.06.003
|
[26] |
刘东, 肖宏儒, 金月, 等. 基于ANSYS的鸡毛菜茎秆切割的有限元分析及验证试验 [J]. 中国农业科技导报, 2018, 20(11):85−93.
LIU D, XIAO H R, JIN Y, et al. Finite element analysis of stalk cutting of Chinese little greens based on ANSYS and verification test [J]. Journal of Agricultural Science and Technology, 2018, 20(11): 85−93.(in Chinese)
|