• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 36 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
SUN Y X, CHEN Y F, JIN X J, et al. AI Differentiation of Bok Choy Seedlings from Weeds [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1484−1490 doi: 10.19303/j.issn.1008-0384.2021.12.013
Citation: SUN Y X, CHEN Y F, JIN X J, et al. AI Differentiation of Bok Choy Seedlings from Weeds [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1484−1490 doi: 10.19303/j.issn.1008-0384.2021.12.013

AI Differentiation of Bok Choy Seedlings from Weeds

doi: 10.19303/j.issn.1008-0384.2021.12.013
  • Received Date: 2021-09-15
  • Rev Recd Date: 2021-11-12
  • Available Online: 2021-12-30
  • Publish Date: 2021-12-28
  •   Objective  An artificial intelligence-based identification method to effectively differentiate bok choy seedlings from weeds was proposed to facilitate vegetable farm weeding operation.   Methods  Bok choy seedlings were recognized by the neural network models to exclude the green pixels from other vegetations considered as weeds by color differentiation. Effectiveness of the convolutional neural networks (CNN) and the emerging transformer models in correctly separating the seedlings and weeds was evaluated.   Result  Although both performed acceptable, the YOLOX model delivered a higher average accuracy of 98.1% and a faster speed at 44.8 fps than Deformable DETR in the recognition operation.  Conclusion  By defining the green pixels of bok choy seedlings as target color, weeds could be rejected by the AI recognition program providing a robust separation for efficient weeding in the field of the random-planting vegetables such as bok choy.
  • loading
  • [1]
    陈桂芬, 马丽, 陈航. 精准施肥技术的研究现状与发展趋势 [J]. 吉林农业大学学报, 2013, 35(3):253−259.

    CHEN G F, MA L, CHEN H. Research status and development trend of precision fertilization technology [J]. Journal of Jilin Agricultural University, 2013, 35(3): 253−259.(in Chinese)
    [2]
    LANINI W T, STRANGE M L. Low-input management of weeds in vegetable fields [J]. California Agriculture, 1991, 45(1): 11−13. doi: 10.3733/ca.v045n01p11
    [3]
    金月, 肖宏儒, 曹光乔, 等. 我国叶类蔬菜机械化水平现状与评价方法研究 [J]. 中国农机化学报, 2020, 41(12):196−201.

    JIN Y, XIAO H R, CAO G Q, et al. Research on status and evaluation methods of leafy vegetable mechanization production level in China [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(12): 196−201.(in Chinese)
    [4]
    洪晓玮, 陈勇, 杨超淞, 等. 有机蔬菜大棚除草机器人研制 [J]. 制造业自动化, 2021, 43(5):33−36, 71. doi: 10.3969/j.issn.1009-0134.2021.05.008

    HONG X W, CHEN Y, YANG C S, et al. Development of a weeding robot for organic vegetable greenhouse [J]. Manufacturing Automation, 2021, 43(5): 33−36, 71.(in Chinese) doi: 10.3969/j.issn.1009-0134.2021.05.008
    [5]
    金小俊, 陈勇, 孙艳霞. 农田杂草识别方法研究进展 [J]. 农机化研究, 2011, 33(7):23−27, 33. doi: 10.3969/j.issn.1003-188X.2011.07.005

    JIN X J, CHEN Y, SUN Y X. Research advances of weed identification in agricultural fields [J]. Journal of Agricultural Mechanization Research, 2011, 33(7): 23−27, 33.(in Chinese) doi: 10.3969/j.issn.1003-188X.2011.07.005
    [6]
    毛文华, 张银桥, 王辉, 等. 杂草信息实时获取技术与设备研究进展 [J]. 农业机械学报, 2013, 44(1):190−195. doi: 10.6041/j.issn.1000-1298.2013.01.036

    MAO W H, ZHANG Y Q, WANG H, et al. Advance techniques and equipments for real-time weed detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(1): 190−195.(in Chinese) doi: 10.6041/j.issn.1000-1298.2013.01.036
    [7]
    王璨, 武新慧, 张燕青, 等. 基于双注意力语义分割网络的田间苗期玉米识别与分割 [J]. 农业工程学报, 2021, 37(9):211−221. doi: 10.11975/j.issn.1002-6819.2021.09.024

    WANG C, WU X H, ZHANG Y Q, et al. Recognition and segmentation of maize seedlings in field based on dual attention semantic segmentation network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 211−221.(in Chinese) doi: 10.11975/j.issn.1002-6819.2021.09.024
    [8]
    樊湘鹏, 周建平, 许燕, 等. 基于优化faster R-CNN的棉花苗期杂草识别与定位 [J]. 农业机械学报, 2021, 52(5):26−34. doi: 10.6041/j.issn.1000-1298.2021.05.003

    FAN X P, ZHOU J P, XU Y, et al. Identification and localization of weeds based on optimized faster R-CNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26−34.(in Chinese) doi: 10.6041/j.issn.1000-1298.2021.05.003
    [9]
    许燕, 温德圣, 周建平, 等. 基于faster R-CNN的新疆棉花幼苗与杂草识别方法 [J]. 排灌机械工程学报, 2021, 39(6):602−607.

    XU Y, WEN D S, ZHOU J P, et al. Identification method of cotton seedlings and weeds in Xinjiang based on faster R-CNN [J]. Journal of Drainage and Irrigation Machinery Engineering, 2021, 39(6): 602−607.(in Chinese)
    [10]
    徐涛, 陈勇, 周卫鹏. 基于三维点云的蔬菜大棚杂草识别方法 [J]. 北方园艺, 2021(2):153−158.

    XU T, CHEN Y, ZHOU W P. A weed identification method in vegetable greenhouses based on three-dimensional point cloud [J]. Northern Horticulture, 2021(2): 153−158.(in Chinese)
    [11]
    OSORIO K, PUERTO A, PEDRAZA C, et al. A deep learning approach for weed detection in lettuce crops using multispectral images [J]. AgriEngineering, 2020, 2(3): 471−488. doi: 10.3390/agriengineering2030032
    [12]
    TANG L, TIAN L, STEWARD B L. Color image segmentation with genetic algorithm for in-field weed sensing [J]. Transactions of the ASAE, 2000, 43(4): 1019−1027. doi: 10.13031/2013.2970
    [13]
    HERRERA P, DORADO J, RIBEIRO Á. A novel approach for weed type classification based on shape descriptors and a fuzzy decision-making method [J]. Sensors, 2014, 14(8): 15304−15324. doi: 10.3390/s140815304
    [14]
    BAKHSHIPOUR A, JAFARI A, NASSIRI S M, et al. Weed segmentation using texture features extracted from wavelet sub-images [J]. Biosystems Engineering, 2017, 157: 1−12. doi: 10.1016/j.biosystemseng.2017.02.002
    [15]
    JIANG H Z, JIANG X S, RU Y, et al. Application of hyperspectral imaging for detecting and visualizing leaf lard adulteration in minced pork [J]. Infrared Physics & Technology, 2020, 110: 103467.
    [16]
    仇裕淇, 黄振楠, 阮昭, 等. 机器视觉技术在农业生产智能化中的应用综述 [J]. 机械研究与应用, 2019, 32(2):202−206.

    QIU Y Q, HUANG Z N, RUAN Z, et al. Review on application of machine vision in intelligent agricultural production [J]. Mechanical Research & Application, 2019, 32(2): 202−206.(in Chinese)
    [17]
    LIAKOS K, BUSATO P, MOSHOU D, et al. Machine learning in agriculture: A review [J]. Sensors, 2018, 18(8): 2674. doi: 10.3390/s18082674
    [18]
    WANG A C, ZHANG W, WEI X H. A review on weed detection using ground-based machine vision and image processing techniques [J]. Computers and Electronics in Agriculture, 2019, 158: 226−240. doi: 10.1016/j.compag.2019.02.005
    [19]
    SHI J H, LI Z Y, ZHU T T, et al. Defect detection of industry wood veneer based on NAS and multi-channel mask R-CNN [J]. Sensors, 2020, 20(16): 4398. doi: 10.3390/s20164398
    [20]
    邓向武, 马旭, 齐龙, 等. 基于卷积神经网络与迁移学习的稻田苗期杂草识别 [J]. 农机化研究, 2021, 43(10):167−171. doi: 10.3969/j.issn.1003-188X.2021.10.030

    DENG X W, MA X, QI L, et al. Recognition of weeds at seedling stage in paddy fields using convolutional neural network and transfer learning [J]. Journal of Agricultural Mechanization Research, 2021, 43(10): 167−171.(in Chinese) doi: 10.3969/j.issn.1003-188X.2021.10.030
    [21]
    YU J L, SCHUMANN A W, SHARPE S M, et al. Detection of grassy weeds in bermudagrass with deep convolutional neural networks [J]. Weed Science, 2020, 68(5): 545−552. doi: 10.1017/wsc.2020.46
    [22]
    HASAN A S M M, SOHEL F, DIEPEVEEN D, et al. A survey of deep learning techniques for weed detection from images [J]. Computers and Electronics in Agriculture, 2021, 184: 106067. doi: 10.1016/j.compag.2021.106067
    [23]
    刘天真, 滕桂法, 苑迎春, 等. 基于改进YOLO v3的自然场景下冬枣果实识别方法 [J]. 农业机械学报, 2021, 52(5):17−25. doi: 10.6041/j.issn.1000-1298.2021.05.002

    LIU T Z, TENG G F, YUAN Y C, et al. Winter jujube fruit recognition method based on improved YOLO v3 under natural scene [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 17−25.(in Chinese) doi: 10.6041/j.issn.1000-1298.2021.05.002
    [24]
    WOEBBECKE D M, MEYER G E, BARGEN K V, et al. Color indices for weed identification under various soil, residue, and lighting conditions [J]. Transactions of the ASAE, 1995, 38(1): 259−269. doi: 10.13031/2013.27838
    [25]
    GÉE C, BOSSU J, JONES G, et al. Crop/weed discrimination in perspective agronomic images [J]. Computers and Electronics in Agriculture, 2008, 60(1): 49−59. doi: 10.1016/j.compag.2007.06.003
    [26]
    刘东, 肖宏儒, 金月, 等. 基于ANSYS的鸡毛菜茎秆切割的有限元分析及验证试验 [J]. 中国农业科技导报, 2018, 20(11):85−93.

    LIU D, XIAO H R, JIN Y, et al. Finite element analysis of stalk cutting of Chinese little greens based on ANSYS and verification test [J]. Journal of Agricultural Science and Technology, 2018, 20(11): 85−93.(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (1004) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return