• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊
LI F L, KONG Q B, ZHANG Q. Spectral Measurements-based Estimation for Chlorophyll in Guanxi Honey Pomelo Leaves [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1447−1456. DOI: 10.19303/j.issn.1008-0384.2021.12.008
Citation: LI F L, KONG Q B, ZHANG Q. Spectral Measurements-based Estimation for Chlorophyll in Guanxi Honey Pomelo Leaves [J]. Fujian Journal of Agricultural Sciences,2021,36(12):1447−1456. DOI: 10.19303/j.issn.1008-0384.2021.12.008

Spectral Measurements-based Estimation for Chlorophyll in Guanxi Honey Pomelo Leaves

More Information
  • Received Date: April 19, 2021
  • Revised Date: September 12, 2021
  • Available Online: December 29, 2021
  •   Objective   A hyperspectral estimation model for the chlorophyll content in the leaves of honey pomelo was developed using spectral measurements on the characteristic parameters for the establishment of a rapid, noninvasive, accurate determination method.
      Method   Characteristic bands of spectrum of the leaves were obtained. The first-order differential spectrum and spectral characteristic variables were used to analyze the correlation between the hyperspectral bands and the relative chlorophyll content (SPAD) of pomelo leaves. Univariate estimation and multiple regression models were constructed and compared to arrive at the best prediction model.
      Result   At the wavelengths between 350 nm and 1 050 nm, the reflectance spectra on the pomelo leaves of varied SPADs decreased significantly with increasing chlorophyll content. SPAD significantly correlated with either the original or the first-order differential spectrum at several wavelengths in the visible light range. The sensitive wavelengths for the original spectral curve were 576 nm and 701 nm, and 691 nm and 748 nm for the first order differential spectrum. Based on the precision of fitting, the one that based on the hyperspectral YSPAD=54.67−15.75 NDVI′691,748−10.60 GRVI550,770+6 565.6 R691−6 784.58 DVI691,748 of 3 multiple regression models displayed the R2 of 0.894, the verification R2 of 0.835 6, and the RMSE of 7.07 and was selected. The univariate regression models applied the first-order differential normalized vegetation index NDVI691,748 and the differential vegetation index DVI691,748 had R2 of 0.824 and 0.798, respectively, the validation R2 of 0.797 and 0.7918, respectively, and RMSEs of 13.21 and 12.56, respectively.
      Conclusion   The multiple regression model based on hyperspectral indices NDVI691,748, GRVI550,770, R691 and DVI691,748 could be adequately applied for estimating chlorophyll content of honey pomelo leaves.
  • [1]
    张青, 栗方亮, 孔庆波, 等. 不同减量施肥模式对蜜柚产量、品质及经济效益的影响 [J]. 果树学报, 2021, 38(3):783−792.

    ZHANG Q, LI F L, KONG Q B, et al. Effect of different reduced fertigation modes on the yield, quality and economic benefits of honey pomelo [J]. Journal of Fruit Science, 2021, 38(3): 783−792.(in Chinese)
    [2]
    LIU P, SHI R, GAO W. Estimating leaf chlorophyll contents by combining multiple spectral indices with an artificial neural network [J]. Earth Science Informatics, 2018, 11(1): 147−156. DOI: 10.1007/s12145-017-0319-1
    [3]
    AMIRRUDDIN A D, MUHARAM F M, ISMAIL M H, et al. Hyperspectral remote sensing for assessment of chlorophyll sufficiency levels in mature oil palm (Elaeis guineensis) based on frond numbers: analysis of decision tree and random forest. Computers and Electronics in Agriculture, 2020, 169: 105221.
    [4]
    PENG Z, GUAN L, LIAO Y, et al. Estimating total leaf chlorophyll content of Gannan navel orange leaves using hyperspectral data based on partial least squares regression [J]. IEEE Access, 2019, 7: 155540−155551. DOI: 10.1109/ACCESS.2019.2949866
    [5]
    袁炜楠, 许童羽, 曹英丽, 等. 基于主基底分析降维方法的水稻冠层叶片叶绿素含量估算 [J]. 浙江大学学报(农业与生命科学版), 2018, 44(4):423−430.

    YUAN W N, XU T Y, CAO Y L, et al. Estimation of chlorophyll content in rice canopy leaves based on main base analysis and dimensionality reduction method [J]. Journal of Zhejiang University (Agric. & Life Sci. ), 2018, 44(4): 423−430.(in Chinese)
    [6]
    李恒凯, 王英浩. 甜柚叶绿素含量高光谱无损检测模型[J]. 华南农业大学学报, 2019, 40(2): 126–132.

    LI H K, WANG Y H. Hyperspectral nondestructive detection model of chlorophyll content of Citrus maxima[J]. Journal of South China Agricultural University, 2019, 40(2): 126–132. (in Chinese)
    [7]
    姜海玲, 李耀, 赵艺源, 等. 扬花期冬小麦冠层叶绿素含量高光谱遥感反演 [J]. 吉林师范大学学报(自然科学版), 2020, 41(3):133−140.

    JIANG H L, LI Y, ZHAO Y Y, et al. Study on the inversion of winter wheat canopy chlorophyll content during flowering period based on hyperspectral remote sensing [J]. Jounral of Jilin Nomal Unversity (Natural Science Edition), 2020, 41(3): 133−140.(in Chinese)
    [8]
    梁爽, 赵庚星, 朱西存. 苹果树叶片叶绿素含量高光谱估测模型研究 [J]. 光谱学与光谱分析, 2012, 32(5):1367−1370. DOI: 10.3964/j.issn.1000-0593(2012)05-1367-04

    LIANG S, ZHAO G X, ZHU X C. Hyperspectral estimation models of chlorophyll content in apple leaves [J]. Spectroscopy and Spectral Analysis, 2012, 32(5): 1367−1370.(in Chinese) DOI: 10.3964/j.issn.1000-0593(2012)05-1367-04
    [9]
    王爱芳, 王妮, 高明, 等. 基于高光谱的香樟叶绿素含量估测模型研究 [J]. 黑龙江工程学院学报, 2018, 32(1):14−19.

    WANG A F, WANG N, GAO M, et al. Estimation models of camphor leaf chlorophyll content based on proximal hyperspectral remote sensing [J]. Journal of Heilongjiang Institute of Technology, 2018, 32(1): 14−19.(in Chinese)
    [10]
    KHDERY G, ARAFAT S, ABOELGHAR M, et al. Selection of optimal hyperspectral vegetation indices for estimating chlorophyll content of some plant species [J]. European Chemical Bulletin, 2017, 6(11): 531−535. DOI: 10.17628/ecb.2017.6.531-535
    [11]
    楚万林, 齐雁冰, 常庆瑞, 等. 棉花冠层叶片叶绿素含量与高光谱参数的相关性 [J]. 西北农林科技大学学报(自然科学版), 2016, 44(9):65−73.

    CHU W L, QI Y B, CHANG Q R, et al. Relationship between chlorophyll content and hyperspectral parameters in canopy leaves of cotton [J]. Journal of Northwest A&F University(Nat. Sci. Ed. ), 2016, 44(9): 65−73.(in Chinese)
    [12]
    李宗飞, 苏继霞, 费聪, 等. 基于高光谱数据的滴灌甜菜叶绿素含量估算 [J]. 农业资源与环境学报, 2020, 37(5):761−769.

    LI Z F, SU J X, FEI C, et al. Estimation of chlorophyll content in sugar beet under drip irrigation based on hyperspectral data [J]. Journal of Agricultural Resources and Environment, 2020, 37(5): 761−769.(in Chinese)
    [13]
    张新乐, 于滋洋, 李厚萱, 等. 东北水稻叶片SPAD遥感光谱估算模型 [J]. 中国农业大学学报, 2020, 25(1):66−75. DOI: 10.11841/j.issn.1007-4333.2020.01.08

    ZHANG X L, YU Z Y, LI H X, et al. Remote sensing estimation model of SPAD for rice leaves in Northeast China [J]. Journal of China Agricultural University, 2020, 25(1): 66−75.(in Chinese) DOI: 10.11841/j.issn.1007-4333.2020.01.08
    [14]
    GUO T, TAN C, LI Q, et al. Estimating leaf chlorophyll content in tobacco based on various canopy hyperspectral parameters [J]. Journal of Ambient Intelligence and Humanizd Computing, 2019, 10(1): 3239−3247.
    [15]
    孙玉婷, 杨红云, 孙爱珍, 等. 水稻叶片SPAD值的高光谱估算模型 [J]. 南方农业学报, 2020, 51(5):1062−1069. DOI: 10.3969/j.issn.2095-1191.2020.05.010

    SUN Y T, YANG H Y, SUN A Z, et al. Hyperspectral estimation model for SPAD value of rice leaves [J]. Journal of Southern Agriculture, 2020, 51(5): 1062−1069.(in Chinese) DOI: 10.3969/j.issn.2095-1191.2020.05.010
    [16]
    CUI Y, ZHAO H, HUANG C, et al. A new integrated vegetation index for the estimation of winter wheat leaf chlorophyll content [J]. Remote Sensing, 2019, 11(8): 974. DOI: 10.3390/rs11080974
    [17]
    孙小香, 王芳东, 郭熙, 等. 基于水稻冠层高光谱的叶片SPAD值估算模型研究 [J]. 江西农业大学学报, 2018, 40(3):444−453.

    SUN X X, WANG F D, GUO X, et al. The estimation models of rice leaf SPAD value based on canopy spectrum [J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(3): 444−453.(in Chinese)
    [18]
    VANBRABANT Y, TITS L, DELALIEUX S, et al. Multitemporal chlorophyll mapping in pome fruit orchards from remotely piloted aircraft systems [J]. Remote Sensing, 2019, 11(12): 1468. DOI: 10.3390/rs11121468
    [19]
    高金龙, 侯尧宸, 白彦福, 等. 基于高光谱数据的高寒草甸氮磷钾含量估测方法研究-以青海省贵南县及玛沁县高寒草甸为例 [J]. 草业学报, 2016, 25(3):9−21. DOI: 10.11686/cyxb2015268

    GAO J L, HOU Y C, BAI Y F, et al. Methods for estimating nitrogen, phosphorus, and potassium content based on hyperspectral data from alpine meadows in Guinan and Maqin Counties, Qinghai Province [J]. Acta Prataculturae Sinica, 2016, 25(3): 9−21.(in Chinese) DOI: 10.11686/cyxb2015268
    [20]
    DIAN Y, LE Y, FANG S, et al. Influence of spectral bandwidth and position on chlorophyll content retrieval at leaf and canopy levels [J]. Journal of Indian Society of Remote Sensing, 2016, 44: 583−593. DOI: 10.1007/s12524-015-0537-2
    [21]
    亚森江·喀哈尔, 尼加提·卡斯木, 茹克亚·萨吾提, 等. 基于高光谱的春小麦抽穗期叶绿素含量估算方法 [J]. 江苏农业科学, 2019, 47(18):266−270.

    YASENJIANG K, NIJIATI K, RUKEYA S, et al. Estimation method of chlorphyll content at heading stage of spring wheat based on hyperspectral data [J]. Jiangsu Agricultural Sciences, 2019, 47(18): 266−270.(in Chinese)
    [22]
    陈澜, 常庆瑞, 高一帆, 等. 猕猴桃叶片叶绿素含量高光谱估算模型研究 [J]. 西北农林科技大学学报(自然科学版), 2020, 48(6):79−89,98.

    CHEN L, CHANG Q R, GAO Y F, et al. Hyperspectral estimation model of chlorophyll content in kiwifruit leaves [J]. Journal of Northwest A&F University(Nat. Sci. Ed. ), 2020, 48(6): 79−89,98.(in Chinese)
    [23]
    LING B, GOODIN D G, RAYNOR E J, et al. Hyperspectral analysis of leaf pigments and nutritional elements in tallgrass prairie vegetation [J]. Frontiers in Plant Science, 2019, 10: 1−13. DOI: 10.3389/fpls.2019.00001
    [24]
    王晓星, 常庆瑞, 刘梦云, 等. 冬小麦冠层水平叶绿素含量的高光谱估测 [J]. 西北农林科技大学学报(自然科学版), 2016, 44(2):48−54.

    WANG X X, CHANG Q R, LIU MY, et al. Hyperspectral estimation of chlorophyll content in canopy of winter wheat [J]. Journal of Northwest A&F University(Nat. Sci. Ed. ), 2016, 44(2): 48−54.(in Chinese)
    [25]
    于雷, 章涛, 朱亚星, 等. 基于IRIV 算法优选大豆叶片高光谱特征波长变量估测SPAD值 [J]. 农业工程学报, 2018, 34(16):148−154. DOI: 10.11975/j.issn.1002-6819.2018.16.019

    YU L, ZHANG T, ZHUY X, et al. Determination of soybean leaf SPAD value using characteristic wavelength variables preferably selected by IRIV algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering , 2018, 34(16): 148−154.(in Chinese) DOI: 10.11975/j.issn.1002-6819.2018.16.019
    [26]
    胥喆, 舒清态, 杨凯博, 等. 基于非成像高光谱的高山松叶绿素估算模型研究 [J]. 西北林学院学报, 2017, 32(2):73−78. DOI: 10.3969/j.issn.1001-7461.2017.02.12

    XU Z, SHU Q T, YANG KB, et al. Estimation models of chlorophyll in pinus densata based on non-imaging hyperspectrum [J]. Journal of Northwest Forestry University, 2017, 32(2): 73−78.(in Chinese) DOI: 10.3969/j.issn.1001-7461.2017.02.12
    [27]
    余蛟洋, 常庆瑞, 班松涛, 等. 猕猴桃叶片 SPAD 值高光谱估算模型构建 [J]. 干旱地 区农业研究, 2018, 36(6):168−174.

    YU J Y, CHANG Q R, BAN S T, et al. Hyperspectral models for estimating SPAD values of kiwifruit leaves [J]. Agricultural Research in the Arid Areas, 2018, 36(6): 168−174.(in Chinese)
    [28]
    ZHAO Y, YAN C, LU S, et al. Estimation of chlorophyll content in intertidal mangrove leaves with different thicknesses using hyperspectral data [J]. Ecological Indicators, 2019, 106(3): 105511.
    [29]
    韩浩坤, 妙佳源, 张钰玉, 等. 基于高光谱反射率的糜子冠层叶片叶绿素含量估算 [J]. 干旱地区农业研究, 2018, 36(1):164−170. DOI: 10.7606/j.issn.1000-7601.2018.01.25

    HAN H K, MIAO J Y, ZHANG Y Y, et al. Estimating chlorophyll content of proso millet canopy by hyperspectral reflectance [J]. Agricultural Research in the Arid Areas, 2018, 36(1): 164−170.(in Chinese) DOI: 10.7606/j.issn.1000-7601.2018.01.25
    [30]
    李媛媛, 常庆瑞, 刘秀英, 等. 基于高光谱和 BP 神经网络的玉米叶片 SPAD 值遥感估算 [J]. 农业工程学报, 2016, 32(16):135−142. DOI: 10.11975/j.issn.1002-6819.2016.16.019

    LI Y Y, CHANG Q R, LIU X Y, et al. Estimation of maize leaf SPAD value based on hyperspectrum and BP neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 135−142.(in Chinese) DOI: 10.11975/j.issn.1002-6819.2016.16.019
    [31]
    陈志强, 王磊, 白由路, 等. 整个生育期玉米叶片 SPAD 高光谱预测模型研究 [J]. 光谱学与光谱分析, 2013, 33(10):2838−2842. DOI: 10.3964/j.issn.1000-0593(2013)10-2838-05

    CHEN Z Q, WANG L, BAI Y L, et al. Hyperspectral prediction model for maize leaf SPAD in the whole growth period [J]. Spectroscopy and Spectral Analysis, 2013, 33(10): 2838−2842.(in Chinese) DOI: 10.3964/j.issn.1000-0593(2013)10-2838-05
    [32]
    潘蓓, 赵庚星, 朱西存, 等. 利用高光谱植被指数估测苹果树冠层叶绿素含量 [J]. 光谱学与光谱分析, 2013, 33(8):2203−2206. DOI: 10.3964/j.issn.1000-0593(2013)08-2203-04

    PAN B, ZHAO G X, ZHU X C, et al. Estimation of chlorophyll content in apple tree canopy based on hyperspectral parameters [J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2203−2206.(in Chinese) DOI: 10.3964/j.issn.1000-0593(2013)08-2203-04
    [33]
    房贤一, 朱西存, 王凌, 等. 基于高光谱的苹果盛果期冠层叶绿素含量监测研究 [J]. 中国农业科学, 2013, 46(16):3504−3513. DOI: 10.3864/j.issn.0578-1752.2013.16.022

    FANG X Y, ZHU X C, WANG L, et al. Hyperspectral monitoring of the canopy chlorophyll content at apple tree prosperous fruit stage [J]. Scientia Agricultura Sinica, 2013, 46(16): 3504−3513.(in Chinese) DOI: 10.3864/j.issn.0578-1752.2013.16.022
    [34]
    PENG Y, ZHANG M, XU Z, et al. Estimation of leaf nutrition status in degraded vegetation based on field survey and hyperspectral data [J]. Scientific Reports, 2020, 10: 1−12. DOI: 10.1038/s41598-019-56847-4
    [35]
    茹克亚·萨吾提, 阿不都艾尼·阿不里, 尼加提·卡斯木, 等. 基于分数阶微分的春小麦叶绿素含量高光谱估算 [J]. 麦类作物学报, 2019, 39(6):738−746. DOI: 10.7606/j.issn.1009-1041.2019.06.15

    RUKEYA S, ABUAINI A, NIJATI K, et al. Spectral estimation of chlorophyll content in spring wheat leaves based on fractional differential [J]. Journal of Triticeae Crops, 2019, 39(6): 738−746.(in Chinese) DOI: 10.7606/j.issn.1009-1041.2019.06.15
    [36]
    颜丙囤, 隋学艳, 王猛, 等. 拔节期淹水玉米冠层光谱变化特征分析 [J]. 山东农业科学, 2016, 48(5):28−30.

    YAN B D, SUI X Y, WANG M, et al. Character analysis of canopy spectral changes of corn at jointing stage under waterlogging stress [J]. Shandong Agricultural Sciences, 2016, 48(5): 28−30.(in Chinese)
    [37]
    王 烁, 常庆瑞, 刘梦云, 等. 基于高光谱遥感的棉花叶片叶绿素含量估算 [J]. 中国农业大学学报, 2017, 22(4):16−27. DOI: 10.11841/j.issn.1007-4333.2017.04.03

    WANG S, CHANG Q R, LIU M Y, et al. Estimation on chlorophyll content of cotton based on optimized spectral index [J]. Journal of China Agricultural University, 2017, 22(4): 16−27.(in Chinese) DOI: 10.11841/j.issn.1007-4333.2017.04.03
    [38]
    纪童, 王波, 杨军银, 等. 基于高光谱的草坪草叶绿素含量模拟估算 [J]. 光谱学与光谱分析, 2020, 40(8):2571−2577.

    JI T, WANG B, YANG J Y, et al. Hyperspectral-based estimation on the chlorophyll content of turfgrass [J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2571−2577.(in Chinese)
  • Related Articles

    [1]WANG Kexiao, ZHOU Rui, LI Bo, OU Yi, HUANG Xiang, YU Bao. Comparison of Estimation Models for Hyperspectral-based Rape Leaf SPAD[J]. Fujian Journal of Agricultural Sciences, 2021, 36(11): 1272-1279. DOI: 10.19303/j.issn.1008-0384.2021.11.003
    [2]LAN Hanhong, CHEN Haihuang, HUANG Weixin, HE Xinyi. Preparation of Polyclonal Antibody Containing CPN60-β for Controlling Rice Stripe Virus Disease[J]. Fujian Journal of Agricultural Sciences, 2021, 36(5): 512-517. DOI: 10.19303/j.issn.1008-0384.2021.05.003
    [3]XIANG Yong-ling, FANG Zheng-wu, ZHAO Ji-wu, GAO De-rong, WANG Xiao-ling. Leaf Chlorophyll and Grain Yield of Low-gluten Wheat as Affected by Waterlogging at Grain-filling Stage[J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 264-270. DOI: 10.19303/j.issn.1008-0384.2019.03.002
    [4]CHEN Jian-cheng, LUO Rui, LIU Jia-qi, LU Ning, WAN Juan, WU Yu-xiang, ZHENG Yu-shan, CHEN Li-guang. Effects of Cd Stress on Biomass and Photosynthesis Fluorescence Characteristics of Magnolia officinalis[J]. Fujian Journal of Agricultural Sciences, 2016, 31(9): 939-944. DOI: 10.19303/j.issn.1008-0384.2016.09.008
    [5]HUANG Ying-ying, LU Dong-he, YANG Cheng-long, CHEN Shen. Effects of Enzyme Application on De-bittering and Nutrient Retentionfor Guanxi Pomelo Juice[J]. Fujian Journal of Agricultural Sciences, 2016, 31(8): 886-891. DOI: 10.19303/j.issn.1008-0384.2016.08.018
    [6]CHEN Cui-teng, FU Guang-hua, HUANG Yu, FU Qiu-ling, WAN Chun-he, CHENG Long-fei, CHEN Hong-mei, SHI Shao-hua. Establishment of a Real-time Fluorescence Quantitative PCR Assay for Detection of Duck RIG-I Like Receptors and interferon Genes[J]. Fujian Journal of Agricultural Sciences, 2015, 30(3): 209-215. DOI: 10.19303/j.issn.1008-0384.2015.03.001
    [7]LIN Jiang-bo, WANG Wei-ying, ZOU Hui, DAI Yi-min. Cloning and Sequence Analysis on Gene of Chlorophyll a/b-binding Protein from Narcissustazetta var. chinensis[J]. Fujian Journal of Agricultural Sciences, 2013, 28(5): 463-467. DOI: 10.19303/j.issn.1008-0384.2013.05.011
    [8]SHI Jin-lin, CHEN En-Bo, ZHANG Hui. Correlation between CCI and chlorophyll content in flue-cured tobacco[J]. Fujian Journal of Agricultural Sciences, 2010, 25(5): 576-579.
    [9]CHEN Li-hua, SU De-sen, LU Xin, CHEN Han-zhen, LI Yue-ren. A preliminary study on bacteria counts in relation to COD and pH of Min River water[J]. Fujian Journal of Agricultural Sciences, 2009, 24(5): 463-466.
    [10]ZHUANG Xiang-sheng, CHE Yong-liang, CHEN Shao-ying, WANG Long-bai, WEI Hong, ZHOU Lun-jiang, CHEN Shi-long. RT-PCR detection of porcine reproductive and respiratory syndrome virus[J]. Fujian Journal of Agricultural Sciences, 2007, 22(1): 35-38.
  • Cited by

    Periodical cited type(5)

    1. 栗方亮,孔庆波,张青. 光谱技术在果树叶片营养诊断上的应用研究进展. 江西农业学报. 2024(03): 22-26 .
    2. 孟繁钰,郭孝玉,郑小曼. 不同海拔毛竹叶绿素的高光谱特征及叶绿素估测模型. 东北林业大学学报. 2024(09): 46-52+57 .
    3. 潘玉霞,李艳大,曹中盛,孙滨峰,黄俊宝,吴自明,冯旭萍,郭永久. 基于便携式蜜柚光谱仪的金沙柚叶片叶绿素含量监测模型. 江西农业学报. 2023(05): 60-66 .
    4. 张红雪,吴凤英,陈宇琳,何峥旋,朱巧莲,毛艳玲. 烟秆生物炭对土壤不同形态钾含量及烟草光合特性的影响. 福建农林大学学报(自然科学版). 2022(04): 468-477 .
    5. 罗靖,杨再强,杨立,袁昌洪,张丰寅,李岩宸,李春影. 基于高光谱参数建立苗期高温条件下草莓叶片叶绿素含量估算模型. 中国农业气象. 2022(10): 832-845 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (619) PDF downloads (30) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return