Citation: | CHEN Z H, HUANG L, WEN Z Q, et al. Hyperspectral Imaging Technology-based Early Diagnosis of a Serious Agaricus Bisporus Disease [J]. Fujian Journal of Agricultural Sciences,2021,36(11):1365−1372 doi: 10.19303/j.issn.1008-0384.2021.11.015 |
[1] |
秦文韬, 王守现, 荣成博, 等. 我国食用菌病害发生与防控概况 [J]. 中国食用菌, 2020, 39(12):1−7.
QIN W T, WANG S X, RONG C B, et al. Occurrence and management of edible fungus diseases in China [J]. Edible Fungi of China, 2020, 39(12): 1−7.(in Chinese)
|
[2] |
谭琦, 王镭, 王永红, 等. 不同地区有害疣孢霉菌株生物学特性研究 [J]. 食用菌学报, 1996, 3(1):46−50.
TAN Q, WANG L, WANG Y H, et al. A study on biological characteristics in isolates of Mycogone perniciosa magn [J]. Acta Edulis Fungi, 1996, 3(1): 46−50.(in Chinese)
|
[3] |
YANG Y, SOSSAH F L, LI Z, et al. Genome-wide identification and analysis of chitinase GH18 gene family in Mycogone perniciosa [J]. Frontiers in Microbiology, 2021, 11: 596719. doi: 10.3389/fmicb.2020.596719
|
[4] |
GEA F J, TELLO J C, NAVARRO M J. Efficacy and effects on yield of different fungicides for control of wet bubble disease of mushroom caused by the mycoparasite Mycogone perniciosa [J]. Crop Protection, 2010, 29(9): 1021−1025. doi: 10.1016/j.cropro.2010.06.006
|
[5] |
PANG L, WANG J H, MEN S, et al. Hyperspectral imaging coupled with multivariate methods for seed vitality estimation and forecast for Quercus variabilis [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2021, 245: 118888. doi: 10.1016/j.saa.2020.118888
|
[6] |
SKONECZNY H, KUBIAK K, SPIRALSKI M, et al. Fire blight disease detection for apple trees: Hyperspectral analysis of healthy, infected and dry leaves. [J]. Remote Sensing, 2020, 12(13): 2101. doi: 10.3390/rs12132101
|
[7] |
SOBEJANO-PAZ V, MIKKELSEN T N, BAUM A, et al. Hyperspectral and thermal sensing of stomatal conductance, transpiration, and photosynthesis for soybean and maize under drought [J]. Remote Sensing, 2020, 12(19): 3182. doi: 10.3390/rs12193182
|
[8] |
PARRAG V, FELFÖLDI J, BARANYAI L, et al. Early detection of cobweb disease infection on Agaricus bisporus sporocarps using hyperspectral imaging[J]. Acta Alimentaria, 2014, 43(Supplement 1): 107−113.
|
[9] |
GASTON E, FRÍAS J M, CULLEN P J, et al. Visible-near infrared hyperspectral imaging for the identification and discrimination of brown blotch disease on mushroom (Agaricus bisporus) caps [J]. Journal of Near Infrared Spectroscopy, 2010, 18(5): 341−353. doi: 10.1255/jnirs.894
|
[10] |
LIN X H, XU J L, SUN D W. Investigation of moisture content uniformity of microwave-vacuum dried mushroom (Agaricus bisporus) by NIR hyperspectra limaging [J]. LWT-Food Science and Technology, 2019, 109: 108−117. doi: 10.1016/j.lwt.2019.03.034
|
[11] |
TAGHIZADEH M, GOWEN A, WARD P, et al. Use of hyperspectral imaging for evaluation of the shelf-life of fresh white button mushrooms (Agaricus bisporus) stored in different packaging films [J]. Innovative Food Science & Emerging Technologies, 2010, 11(3): 423−431.
|
[12] |
GOWEN A A, TAGHIZADEH M, O’DONNELL C P. Identification of mushrooms subjected to freeze damage using hyperspectral imaging [J]. Journal of Food Engineering, 2009, 93(1): 7−12. doi: 10.1016/j.jfoodeng.2008.12.021
|
[13] |
张春兰, 徐济责, 柿岛真, 等. 双孢蘑菇疣孢霉病的发病过程及病原菌的核相研究 [J]. 微生物学报, 2017, 57(3):422−433.
ZHANG C L, XU J Z, SHI D Z, et al. The development of Agaricus bisporus wet bubble disease and the nuclear phase of pathogen [J]. Acta Microbiologica Sinica, 2017, 57(3): 422−433.(in Chinese)
|
[14] |
郭倩, 凌霞芬, 王志强, 等. 双孢蘑菇工厂化栽培过程中环境因子的调控 [J]. 食用菌学报, 2020, 9(3):38−41.
GUO Q, LING X F, WANG Z Q, et al. The control of environmental factors in modern industrial cultivation ofAgaricus bisporus [J]. Acta Edulis Fungi, 2020, 9(3): 38−41.(in Chinese)
|
[15] |
BELGIU M, DRĂGUŢ L. Random forest in remote sensing: A review of applications and future directions [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24−31. doi: 10.1016/j.isprsjprs.2016.01.011
|
[16] |
DALPONTE M, ØRKA H O, GOBAKKEN T, et al. Tree species classification in boreal forests with hyperspectral data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 2632−2645. doi: 10.1109/TGRS.2012.2216272
|
[17] |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: A new learning scheme of feedforward neural networks [C]// 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541). Budapest, Hungary: IEEE, 2004: 985 − 990.
|
[18] |
DING S F, XU X Z, NIE R. Extreme learning machine and its applications [J]. Neural Computing and Applications, 2014, 25(3/4): 549−556.
|
[19] |
李鸿强. 基于高光谱分析的蔬菜品质检测方法研究[D]. 北京: 中国农业大学, 2019.
LI H Q. Study on detection method of vegetable quality based on hyperspectral analysis[D]. Beijing: China Agricultural University, 2019. (in Chinese)
|