Citation: | SANG L, SUN S K, CHEN D J, et al. Cloning and Bioinformatics of NPPFR2 of Minxinan Black Rabbit [J]. Fujian Journal of Agricultural Sciences,2021,36(11):1344−1350 doi: 10.19303/j.issn.1008-0384.2021.11.012 |
[1] |
孙世坤, 桑雷, 陈冬金, 等. 闽西南黑兔的肉质分析研究 [J]. 中国农学通报, 2012, 28(20):33−36. doi: 10.11924/j.issn.1000-6850.2012-0630
SUN S K, SANG L, CHEN D J, et al. Analysis of minxinan black rabbit's meat quality [J]. Chinese Agricultural Science Bulletin, 2012, 28(20): 33−36.(in Chinese) doi: 10.11924/j.issn.1000-6850.2012-0630
|
[2] |
COHEN S, JANICKI-DEVERTS D, MILLER G E. Psychological stress and disease [J]. JAMA, 2007, 298(14): 1685−1687. doi: 10.1001/jama.298.14.1685
|
[3] |
ULRICH-LAI Y M, HERMAN J P. Neural regulation of endocrine and autonomic stress responses [J]. Nature Reviews Neuroscience, 2009, 10(6): 397−409. doi: 10.1038/nrn2647
|
[4] |
BAO A M, SWAAB D F. The human hypothalamus in mood disorders: The HPA axis in the center [J]. IBRO Reports, 2019, 6: 45−53. doi: 10.1016/j.ibror.2018.11.008
|
[5] |
AYACHI S, SIMONIN F. Involvement of mammalian RF-amide peptides and their receptors in the modulation of nociception in rodents [J]. Frontiers in Endocrinology, 2014, 5: 158.
|
[6] |
GONCHARUK V, ZENG Z Z, WANG R P, et al. Distribution of the neuropeptide FF1 receptor (hFF1) in the human hypothalamus and surrounding basal forebrain structures: Immunohistochemical study [J]. The Journal of Comparative Neurology, 2004, 474(4): 487−503. doi: 10.1002/cne.20132
|
[7] |
WU C H, TAO P L, HUANG E Y K. Distribution of neuropeptide FF (NPFF) receptors in correlation with morphine-induced reward in the rat brain [J]. Peptides, 2010, 31(7): 1374−1382. doi: 10.1016/j.peptides.2010.03.036
|
[8] |
MANKUS J V, MCCURDY C R. Nonpeptide ligands of neuropeptide FF: Current status and structural insights [J]. Future Medicinal Chemistry, 2012, 4(9): 1085−1092. doi: 10.4155/fmc.12.67
|
[9] |
孙瑜隆, 马小莉, 李迪杰, 等. 神经肽FF的生物活性研究进展 [J]. 现代生物医学进展, 2015, 15(7):1365−1368.
SUN Y L, MA X L, LI D J, et al. Advances in the biological activity of neuropeptide FF [J]. Progress in Modern Biomedicine, 2015, 15(7): 1365−1368.(in Chinese)
|
[10] |
JHAMANDAS J H, GONCHARUK V. Role of neuropeptide FF in central cardiovascular and neuroendocrine regulation [J]. Frontiers in Endocrinology, 2013, 4: 8.
|
[11] |
ZAJAC J M. Neuropeptide FF: New molecular insights [J]. Trends in Pharmacological Sciences, 2001, 22(2): 63.
|
[12] |
CONSTANTIN S, PIZANO K, MATSON K, et al. An inhibitory circuit from brainstem to GnRH neurons in male mice: A new role for the RFRP receptor [J]. Endocrinology, 2021, 162(5): bqab030. doi: 10.1210/endocr/bqab030
|
[13] |
WACŁAWCZYK D, SILBERRING J, GRASSO G. The insulin-degrading enzyme as a link between insulin and neuropeptides metabolism [J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36(1): 183−187. doi: 10.1080/14756366.2020.1850712
|
[14] |
ELSHOURBAGY N A, AMES R S, FITZGERALD L R, et al. Receptor for the pain modulatory neuropeptides FF and AF is an orphan G protein-coupled receptor [J]. Journal of Biological Chemistry, 2000, 275(34): 25965−25971. doi: 10.1074/jbc.M004515200
|
[15] |
MOLLEREAU C, MAZARGUIL H, MARCUS D, et al. Pharmacological characterization of human NPFF1 and NPFF2 receptors expressed in CHO cells by using NPY Y1 receptor antagonists [J]. European Journal of Pharmacology, 2002, 451(3): 245−256. doi: 10.1016/S0014-2999(02)02224-0
|
[16] |
LIN Y T, HUANG Y L, TSAI S C, et al. Ablation of NPFFR2 in mice reduces response to single prolonged stress model [J]. Cells, 2020, 9(11): 2479. doi: 10.3390/cells9112479
|
[17] |
ANKÖ M L, PANULA P. Regulation of endogenous human NPFF2 receptor by neuropeptide FF in SK-N-MC neuroblastoma cell line [J]. Journal of Neurochemistry, 2006, 96(2): 573−584. doi: 10.1111/j.1471-4159.2005.03581.x
|
[18] |
BURGESS D J. NF-κB shows its beneficial side [J]. Nature Reviews Cancer, 2011, 11(12): 832−833. doi: 10.1038/nrc3168
|
[19] |
WU X F, LIU Y, GAO C F, et al. Novel alternative splicing variants of ACOX1 and their differential expression patterns in goats [J]. Archives Animal Breeding, 2018, 61(1): 59−70. doi: 10.5194/aab-61-59-2018
|
[20] |
王芬, 贾建平, 秦伟, 等. GSK3B基因3′-UTR多态性与阿尔茨海默病发病风险的相关性分析 [J]. 脑与神经疾病杂志, 2019, 27(3):138−142.
WANG F, JIA J P, QIN W, et al. Association of the polymorphisms in the 3′-UTR of GSK3B with the risk for Alzheimer's disease [J]. Journal of Brain and Nervous Diseases, 2019, 27(3): 138−142.(in Chinese)
|
[21] |
李素雅, 张建宏, 陈文, 等. 鸡Lpin1基因3′-UTR遗传变异及其对miRNA结合位点的潜在效应 [J]. 中国农业科学, 2012, 45(8):1613−1620. doi: 10.3864/j.issn.0578-1752.2012.08.017
LI S Y, ZHANG J H, CHEN W, et al. Genetic variation analysis of 3′-UTR region of chicken Lpin1 gene and the potential effect on miRNA binding sites [J]. Scientia Agricultura Sinica, 2012, 45(8): 1613−1620.(in Chinese) doi: 10.3864/j.issn.0578-1752.2012.08.017
|
[22] |
陈安利, 夏定国, 裘智勇, 等. 家蚕卵黄膜蛋白基因BmVMP23的3′-UTR变异对其表达的影响 [J]. 蚕业科学, 2013, 39(1):28−34.
CHEN A L, XIA D G, QIU Z Y, et al. Influence of 3′-UTR mutation on expression of silkworm vitelline membrane protein gene BmVMP23 [J]. Science of Sericulture, 2013, 39(1): 28−34.(in Chinese)
|
[23] |
杨韩, 张阳海, 王敏, 等. 陕北白绒山羊POU1F1基因3′-UTR多态性及其与生长性状的相关分析 [J]. 农业生物技术学报, 2019, 27(7):1224−1232.
YANG H, ZHANG Y H, WANG M, et al. Polymorphisms of 3′-UTR of POU1F1 gene and its association with growth traits in Shaanbei white cashmere goats(Capra hircus) [J]. Journal of Agricultural Biotechnology, 2019, 27(7): 1224−1232.(in Chinese)
|
[24] |
孙渭博, 张利平, 郎侠, 等. 四个绵羊品种BMPR-IB基因3′-UTR区多态性及其与胎产羔数的相关分析 [J]. 农业生物技术学报, 2020, 28(4):702−710.
SUN W B, ZHANG L P, LANG X, et al. Polymorphism of 3′-UTR region of BMPR-IB gene and its correlation with litter size in four sheep(Ovis aries) varieties [J]. Journal of Agricultural Biotechnology, 2020, 28(4): 702−710.(in Chinese)
|