• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 36 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
WANG K X, ZHOU R, LI B, et al. Comparison of Estimation Models for Hyperspectral-based Rape Leaf SPAD [J]. Fujian Journal of Agricultural Sciences,2021,36(11):1272−1279 doi: 10.19303/j.issn.1008-0384.2021.11.003
Citation: WANG K X, ZHOU R, LI B, et al. Comparison of Estimation Models for Hyperspectral-based Rape Leaf SPAD [J]. Fujian Journal of Agricultural Sciences,2021,36(11):1272−1279 doi: 10.19303/j.issn.1008-0384.2021.11.003

Comparison of Estimation Models for Hyperspectral-based Rape Leaf SPAD

doi: 10.19303/j.issn.1008-0384.2021.11.003
  • Received Date: 2021-07-14
  • Rev Recd Date: 2021-10-11
  • Available Online: 2021-12-30
  • Publish Date: 2021-11-28
  •   Objective  In order to compare the estimation model effect of SPAD of rape leaves based on hyperspectral parameters.  Method  Models of partial least squares regression (PLSR), back propagation neural network (BPNN), support vector regression (SVR), and deep neural network (DNN) based on the spectral parameters selected from the correlation analysis between the spectral reflectance parameters and SPAD data were constructed and compared for the estimation of chlorophyll SPAD of rape leaves.  Result  The SPADs and the original spectra in the blue wave of 425-495 nm and red wave of 665-680 nm of the leaves had a weak positive correlation. However, significantly inverse correlations between the SPADs and the green-yellow band of 510-650 nm and between that and the red edge band of 690-735nm were observed. The negative correlation coefficient between SDb and SDy was as high as −0.98, while the positive correlation coefficient between CARI and MCARI, CI and NDVI705 0.99. The 3 sets of SDb and SDy, CARI and MCARI, and CI and NDVI705 had significant linear correlations with the leaf SPAD. They could be somewhat interchangeable rendering them potential for accuracy improvement. The DNN model had an R2 of 0.93 and an RPD of 3.92 indicating a high predictability of the two models. They were followed by SVR, while PLSR and BPNN models being similar.   Conclusion  There were different degrees of correlation between the SPADs and the spectral parameters of rape leaves. The non-linear prediction model based on machine learning showed higher stability and predictability than the others, and the deep learning algorithm more effective in estimating SPAD of rape leaves.
  • loading
  • [1]
    李哲, 张飞, 陈丽华, 等. 光谱指数的植物叶片叶绿素含量估算模型 [J]. 光谱学与光谱分析, 2018, 38(5):1533−1539.

    LI Z, ZHANG F, CHEN L H, et al. Research on spectrum variance of vegetation leaves and estimation model for leaf chlorophyll content based on the spectral index [J]. Spectroscopy and Spectral Analysis, 2018, 38(5): 1533−1539.(in Chinese)
    [2]
    黄祥, 周蕊, 王茜, 等. 遥感定量反演农作物叶绿素的现状与发展 [J]. 安徽农业科学, 2018, 46(32):192−194, 202. doi: 10.3969/j.issn.0517-6611.2018.32.056

    HUANG X, ZHOU R, WANG Q, et al. The status and development of quantitative retrieval of crop chlorophyll by remote sensing [J]. Journal of Anhui Agricultural Sciences, 2018, 46(32): 192−194, 202.(in Chinese) doi: 10.3969/j.issn.0517-6611.2018.32.056
    [3]
    丁希斌, 刘飞, 张初, 等. 基于高光谱成像技术的油菜叶片SPAD值检测 [J]. 光谱学与光谱分析, 2015, 35(2):486−491. doi: 10.3964/j.issn.1000-0593(2015)02-0486-06

    DING X B, LIU F, ZHANG C, et al. Prediction of SPAD value in oilseed rape leaves using hyperspectral imaging technique [J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 486−491.(in Chinese) doi: 10.3964/j.issn.1000-0593(2015)02-0486-06
    [4]
    殷紫, 常庆瑞, 刘淼, 等. 基于光谱指数的不同生育期油菜叶片SPAD估测 [J]. 西北农林科技大学学报(自然科学版), 2017, 45(5):66−72.

    YIN Z, CHANG Q R, LIU M, et al. Estimation of rape leaf SPAD in different periods based on spectral indices [J]. Journal of Northwest A & F University (Natural Science Edition), 2017, 45(5): 66−72.(in Chinese)
    [5]
    张锐, 廖桂平, 王访, 等. 基于冠层高光谱的油菜角果期红边参数及叶片SPAD值反演模型 [J]. 江苏农业科学, 2019, 47(20):255−259.

    ZHANG R, LIAO G P, WANG F, et al. Red edge parameters and SPAD inversion model of rapeseed based on canopy hyperspectral data [J]. Jiangsu Agricultural Sciences, 2019, 47(20): 255−259.(in Chinese)
    [6]
    鲍义东, 陈秋实, 陈果. 高光谱技术在农业遥感中的应用 [J]. 电子技术与软件工程, 2020(8):170−171.

    BAO Y D, CHEN Q S, CHEN G. Application of hyperspectral technique in agricultural remote sensing [J]. Electronic Technology & Software Engineering, 2020(8): 170−171.(in Chinese)
    [7]
    何勇, 彭继宇, 刘飞, 等. 基于光谱和成像技术的作物养分生理信息快速检测研究进展 [J]. 农业工程学报, 2015, 31(3):174−189. doi: 10.3969/j.issn.1002-6819.2015.03.024

    HE Y, PENG J Y, LIU F, et al. Critical review of fast detection of crop nutrient and physiological information with spectral and imaging technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 174−189.(in Chinese) doi: 10.3969/j.issn.1002-6819.2015.03.024
    [8]
    HORLER D N H, DOCKRAY M, BARBER J. The red edge of plant leaf reflectance [J]. International Journal of Remote Sensing, 1983, 4(2): 273−288. doi: 10.1080/01431168308948546
    [9]
    DAUGHTRY C S T, WALTHALL C L, KIM M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance [J]. Remote Sensing of Environment, 2000, 74(2): 229−239. doi: 10.1016/S0034-4257(00)00113-9
    [10]
    BROGE N H, MORTENSEN J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data [J]. Remote Sensing of Environment, 2002, 81(1): 45−57. doi: 10.1016/S0034-4257(01)00332-7
    [11]
    姚付启, 张振华, 杨润亚, 等. 基于主成分分析和BP神经网络的法国梧桐叶绿素含量高光谱反演研究 [J]. 测绘科学, 2010, 35(1):109−112.

    YAO F Q, ZHANG Z H, YANG R Y, et al. Research on Platanus orientalis L. chlorophyll concentration estimation with hyperspectral data based on BP-artificial neural network and principal component analysis [J]. Science of Surveying and Mapping, 2010, 35(1): 109−112.(in Chinese)
    [12]
    孙明馨, 刘琪, 王帅, 等. 基于高光谱的低温胁迫下冬小麦SPAD估算 [J]. 福建农林大学学报(自然科学版), 2020, 49(6):728−733.

    SUN M X, LIU Q, WANG S, et al. SPAD estimation of winter wheat under low temperature stress based on hyper-spectrum [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(6): 728−733.(in Chinese)
    [13]
    赵琨, 王珺珂, 王楚锋, 等. 基于高光谱成像技术的油菜SPAD值空间分布预测及最佳测量叶位 [J]. 华中农业大学学报, 2018, 37(4):78−84.

    ZHAO K, WANG J K, WANG C F, et al. Hyperspectral imaging technology based prediction of spatial distribution of SPAD value of rapeseed and optimal measurement of leaf position [J]. Journal of Huazhong Agricultural University, 2018, 37(4): 78−84.(in Chinese)
    [14]
    由明明, 常庆瑞, 田明璐, 等. 基于随机森林回归的油菜叶片SPAD值遥感估算 [J]. 干旱地区农业研究, 2019, 37(1):74−81. doi: 10.7606/j.issn.1000-7601.2019.01.10

    YOU M M, CHANG Q R, TIAN M L, et al. Estimation of rapeseed leaf SPAD value based on random forest regression [J]. Agricultural Research in the Arid Areas, 2019, 37(1): 74−81.(in Chinese) doi: 10.7606/j.issn.1000-7601.2019.01.10
    [15]
    崔小涛, 常庆瑞, 屈春燕, 等. 基于高光谱和MLSR-GA-BP神经网络模型油菜叶片SPAD值遥感估算 [J]. 东北农业大学学报, 2020, 51(8):74−84. doi: 10.3969/j.issn.1005-9369.2020.08.010

    CUI X T, CHANG Q R, QU C Y, et al. Remote sensing estimation of SPAD value for rape leaf based on hyperspectral and MLSR-GA-BP neural network model [J]. Journal of Northeast Agricultural University, 2020, 51(8): 74−84.(in Chinese) doi: 10.3969/j.issn.1005-9369.2020.08.010
    [16]
    李媛媛, 常庆瑞, 刘秀英, 等. 基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算 [J]. 农业工程学报, 2016, 32(16):135−142. doi: 10.11975/j.issn.1002-6819.2016.16.019

    LI Y Y, CHANG Q R, LIU X Y, et al. Estimation of maize leaf SPAD value based on hyperspectrum and BP neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 135−142.(in Chinese) doi: 10.11975/j.issn.1002-6819.2016.16.019
    [17]
    康丽, 高睿, 孔庆明, 等. 水稻叶片SPAD值高光谱成像估测 [J]. 东北农业大学学报, 2020, 51(10):89−96. doi: 10.3969/j.issn.1005-9369.2020.10.011

    KANG L, GAO R, KONG Q M, et al. Estimation of SPAD value of rice leaves based on hyperspectral image [J]. Journal of Northeast Agricultural University, 2020, 51(10): 89−96.(in Chinese) doi: 10.3969/j.issn.1005-9369.2020.10.011
    [18]
    刘恬琳, 朱西存, 白雪源, 等. 土壤有机质含量高光谱估测模型构建及精度对比 [J]. 智慧农业(中英文), 2020, 2(3):129−138.

    LIU T L, ZHU X C, BAI X Y, et al. Hyperspectral estimation model construction and accuracy comparison of soil organic matter content [J]. Smart Agriculture, 2020, 2(3): 129−138.(in Chinese)
    [19]
    于雷, 洪永胜, 耿雷, 等. 基于偏最小二乘回归的土壤有机质含量高光谱估算 [J]. 农业工程学报, 2015, 31(14):103−109. doi: 10.11975/j.issn.1002-6819.2015.14.015

    YU L, HONG Y S, GENG L, et al. Hyperspectral estimation of soil organic matter content based on partial least squares regression [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14): 103−109.(in Chinese) doi: 10.11975/j.issn.1002-6819.2015.14.015
    [20]
    张燕平, 张铃. 机器学习理论与算法[M]. 北京: 科学出版社, 2012: 27.
    [21]
    ERIN L D, NAVDEEP G, SPENCER A, et al (2021). H2O: R Interface for the 'H2O' scalable machine learning platform. R package version 3.32.1.3. https://CRAN.R-project.org/package=h2o.
    [22]
    程显毅, 施佺. 深度学习与R语言[M]. 北京: 机械工业出版社, 2017: 164 − 165.
    [23]
    刘宁, 邢子正, 乔浪, 等. 基于模型集群的马铃薯叶绿素检测光谱变量筛选讨论 [J]. 光谱学与光谱分析, 2020, 40(7):2259−2266.

    LIU N, XING Z Z, QIAO L, et al. Discussion on spectral variables selection of potato chlorophyll using model population analysis [J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 2259−2266.(in Chinese)
    [24]
    徐逸, 董轩妍, 王俊杰. 4种机器学习模型反演太湖叶绿素a浓度的比较 [J]. 水生态学杂志, 2019, 40(4):48−57.

    XU Y, DONG X Y, WANG J J. Use of remote multispectral imaging to monitor chlorophyll-a in Taihu lake: A comparison of four machine learning models [J]. Journal of Hydroecology, 2019, 40(4): 48−57.(in Chinese)
    [25]
    董哲, 杨武德, 张美俊, 等. 基于高光谱遥感的玉米叶片SPAD值估算模型研究 [J]. 作物杂志, 2019(3):126−131.

    DONG Z, YANG W D, ZHANG M J, et al. Estimation models of maize leaf SPAD value based on hyperspectral remote sensing [J]. Crops, 2019(3): 126−131.(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (617) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return