Citation: | WANG K X, ZHOU R, LI B, et al. Comparison of Estimation Models for Hyperspectral-based Rape Leaf SPAD [J]. Fujian Journal of Agricultural Sciences,2021,36(11):1272−1279 doi: 10.19303/j.issn.1008-0384.2021.11.003 |
[1] |
李哲, 张飞, 陈丽华, 等. 光谱指数的植物叶片叶绿素含量估算模型 [J]. 光谱学与光谱分析, 2018, 38(5):1533−1539.
LI Z, ZHANG F, CHEN L H, et al. Research on spectrum variance of vegetation leaves and estimation model for leaf chlorophyll content based on the spectral index [J]. Spectroscopy and Spectral Analysis, 2018, 38(5): 1533−1539.(in Chinese)
|
[2] |
黄祥, 周蕊, 王茜, 等. 遥感定量反演农作物叶绿素的现状与发展 [J]. 安徽农业科学, 2018, 46(32):192−194, 202. doi: 10.3969/j.issn.0517-6611.2018.32.056
HUANG X, ZHOU R, WANG Q, et al. The status and development of quantitative retrieval of crop chlorophyll by remote sensing [J]. Journal of Anhui Agricultural Sciences, 2018, 46(32): 192−194, 202.(in Chinese) doi: 10.3969/j.issn.0517-6611.2018.32.056
|
[3] |
丁希斌, 刘飞, 张初, 等. 基于高光谱成像技术的油菜叶片SPAD值检测 [J]. 光谱学与光谱分析, 2015, 35(2):486−491. doi: 10.3964/j.issn.1000-0593(2015)02-0486-06
DING X B, LIU F, ZHANG C, et al. Prediction of SPAD value in oilseed rape leaves using hyperspectral imaging technique [J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 486−491.(in Chinese) doi: 10.3964/j.issn.1000-0593(2015)02-0486-06
|
[4] |
殷紫, 常庆瑞, 刘淼, 等. 基于光谱指数的不同生育期油菜叶片SPAD估测 [J]. 西北农林科技大学学报(自然科学版), 2017, 45(5):66−72.
YIN Z, CHANG Q R, LIU M, et al. Estimation of rape leaf SPAD in different periods based on spectral indices [J]. Journal of Northwest A & F University (Natural Science Edition), 2017, 45(5): 66−72.(in Chinese)
|
[5] |
张锐, 廖桂平, 王访, 等. 基于冠层高光谱的油菜角果期红边参数及叶片SPAD值反演模型 [J]. 江苏农业科学, 2019, 47(20):255−259.
ZHANG R, LIAO G P, WANG F, et al. Red edge parameters and SPAD inversion model of rapeseed based on canopy hyperspectral data [J]. Jiangsu Agricultural Sciences, 2019, 47(20): 255−259.(in Chinese)
|
[6] |
鲍义东, 陈秋实, 陈果. 高光谱技术在农业遥感中的应用 [J]. 电子技术与软件工程, 2020(8):170−171.
BAO Y D, CHEN Q S, CHEN G. Application of hyperspectral technique in agricultural remote sensing [J]. Electronic Technology & Software Engineering, 2020(8): 170−171.(in Chinese)
|
[7] |
何勇, 彭继宇, 刘飞, 等. 基于光谱和成像技术的作物养分生理信息快速检测研究进展 [J]. 农业工程学报, 2015, 31(3):174−189. doi: 10.3969/j.issn.1002-6819.2015.03.024
HE Y, PENG J Y, LIU F, et al. Critical review of fast detection of crop nutrient and physiological information with spectral and imaging technology [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 174−189.(in Chinese) doi: 10.3969/j.issn.1002-6819.2015.03.024
|
[8] |
HORLER D N H, DOCKRAY M, BARBER J. The red edge of plant leaf reflectance [J]. International Journal of Remote Sensing, 1983, 4(2): 273−288. doi: 10.1080/01431168308948546
|
[9] |
DAUGHTRY C S T, WALTHALL C L, KIM M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance [J]. Remote Sensing of Environment, 2000, 74(2): 229−239. doi: 10.1016/S0034-4257(00)00113-9
|
[10] |
BROGE N H, MORTENSEN J V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data [J]. Remote Sensing of Environment, 2002, 81(1): 45−57. doi: 10.1016/S0034-4257(01)00332-7
|
[11] |
姚付启, 张振华, 杨润亚, 等. 基于主成分分析和BP神经网络的法国梧桐叶绿素含量高光谱反演研究 [J]. 测绘科学, 2010, 35(1):109−112.
YAO F Q, ZHANG Z H, YANG R Y, et al. Research on Platanus orientalis L. chlorophyll concentration estimation with hyperspectral data based on BP-artificial neural network and principal component analysis [J]. Science of Surveying and Mapping, 2010, 35(1): 109−112.(in Chinese)
|
[12] |
孙明馨, 刘琪, 王帅, 等. 基于高光谱的低温胁迫下冬小麦SPAD估算 [J]. 福建农林大学学报(自然科学版), 2020, 49(6):728−733.
SUN M X, LIU Q, WANG S, et al. SPAD estimation of winter wheat under low temperature stress based on hyper-spectrum [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2020, 49(6): 728−733.(in Chinese)
|
[13] |
赵琨, 王珺珂, 王楚锋, 等. 基于高光谱成像技术的油菜SPAD值空间分布预测及最佳测量叶位 [J]. 华中农业大学学报, 2018, 37(4):78−84.
ZHAO K, WANG J K, WANG C F, et al. Hyperspectral imaging technology based prediction of spatial distribution of SPAD value of rapeseed and optimal measurement of leaf position [J]. Journal of Huazhong Agricultural University, 2018, 37(4): 78−84.(in Chinese)
|
[14] |
由明明, 常庆瑞, 田明璐, 等. 基于随机森林回归的油菜叶片SPAD值遥感估算 [J]. 干旱地区农业研究, 2019, 37(1):74−81. doi: 10.7606/j.issn.1000-7601.2019.01.10
YOU M M, CHANG Q R, TIAN M L, et al. Estimation of rapeseed leaf SPAD value based on random forest regression [J]. Agricultural Research in the Arid Areas, 2019, 37(1): 74−81.(in Chinese) doi: 10.7606/j.issn.1000-7601.2019.01.10
|
[15] |
崔小涛, 常庆瑞, 屈春燕, 等. 基于高光谱和MLSR-GA-BP神经网络模型油菜叶片SPAD值遥感估算 [J]. 东北农业大学学报, 2020, 51(8):74−84. doi: 10.3969/j.issn.1005-9369.2020.08.010
CUI X T, CHANG Q R, QU C Y, et al. Remote sensing estimation of SPAD value for rape leaf based on hyperspectral and MLSR-GA-BP neural network model [J]. Journal of Northeast Agricultural University, 2020, 51(8): 74−84.(in Chinese) doi: 10.3969/j.issn.1005-9369.2020.08.010
|
[16] |
李媛媛, 常庆瑞, 刘秀英, 等. 基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算 [J]. 农业工程学报, 2016, 32(16):135−142. doi: 10.11975/j.issn.1002-6819.2016.16.019
LI Y Y, CHANG Q R, LIU X Y, et al. Estimation of maize leaf SPAD value based on hyperspectrum and BP neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 135−142.(in Chinese) doi: 10.11975/j.issn.1002-6819.2016.16.019
|
[17] |
康丽, 高睿, 孔庆明, 等. 水稻叶片SPAD值高光谱成像估测 [J]. 东北农业大学学报, 2020, 51(10):89−96. doi: 10.3969/j.issn.1005-9369.2020.10.011
KANG L, GAO R, KONG Q M, et al. Estimation of SPAD value of rice leaves based on hyperspectral image [J]. Journal of Northeast Agricultural University, 2020, 51(10): 89−96.(in Chinese) doi: 10.3969/j.issn.1005-9369.2020.10.011
|
[18] |
刘恬琳, 朱西存, 白雪源, 等. 土壤有机质含量高光谱估测模型构建及精度对比 [J]. 智慧农业(中英文), 2020, 2(3):129−138.
LIU T L, ZHU X C, BAI X Y, et al. Hyperspectral estimation model construction and accuracy comparison of soil organic matter content [J]. Smart Agriculture, 2020, 2(3): 129−138.(in Chinese)
|
[19] |
于雷, 洪永胜, 耿雷, 等. 基于偏最小二乘回归的土壤有机质含量高光谱估算 [J]. 农业工程学报, 2015, 31(14):103−109. doi: 10.11975/j.issn.1002-6819.2015.14.015
YU L, HONG Y S, GENG L, et al. Hyperspectral estimation of soil organic matter content based on partial least squares regression [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14): 103−109.(in Chinese) doi: 10.11975/j.issn.1002-6819.2015.14.015
|
[20] |
张燕平, 张铃. 机器学习理论与算法[M]. 北京: 科学出版社, 2012: 27.
|
[21] |
ERIN L D, NAVDEEP G, SPENCER A, et al (2021). H2O: R Interface for the 'H2O' scalable machine learning platform. R package version 3.32.1.3. https://CRAN.R-project.org/package=h2o.
|
[22] |
程显毅, 施佺. 深度学习与R语言[M]. 北京: 机械工业出版社, 2017: 164 − 165.
|
[23] |
刘宁, 邢子正, 乔浪, 等. 基于模型集群的马铃薯叶绿素检测光谱变量筛选讨论 [J]. 光谱学与光谱分析, 2020, 40(7):2259−2266.
LIU N, XING Z Z, QIAO L, et al. Discussion on spectral variables selection of potato chlorophyll using model population analysis [J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 2259−2266.(in Chinese)
|
[24] |
徐逸, 董轩妍, 王俊杰. 4种机器学习模型反演太湖叶绿素a浓度的比较 [J]. 水生态学杂志, 2019, 40(4):48−57.
XU Y, DONG X Y, WANG J J. Use of remote multispectral imaging to monitor chlorophyll-a in Taihu lake: A comparison of four machine learning models [J]. Journal of Hydroecology, 2019, 40(4): 48−57.(in Chinese)
|
[25] |
董哲, 杨武德, 张美俊, 等. 基于高光谱遥感的玉米叶片SPAD值估算模型研究 [J]. 作物杂志, 2019(3):126−131.
DONG Z, YANG W D, ZHANG M J, et al. Estimation models of maize leaf SPAD value based on hyperspectral remote sensing [J]. Crops, 2019(3): 126−131.(in Chinese)
|