Citation: | JIA L Q, WU H M, ZENG K M, et al. Expression Patterns of Various Maize ZmbZIPs [J]. Fujian Journal of Agricultural Sciences,2021,36(11):1255−1263 doi: 10.19303/j.issn.1008-0384.2021.11.001 |
[1] |
JAKOBY M, WEISSHAAR B, DRÖGE-LASER W, et al. bZIP transcription factors in Arabidopsis [J]. Trends in Plant Science, 2002, 7(3): 106−111. doi: 10.1016/S1360-1385(01)02223-3
|
[2] |
DRÖGE-LASER W, SNOEK B L, SNEL B, et al. The Arabidopsis bZIP transcription factor family—an update [J]. Current Opinion in Plant Biology, 2018, 45: 36−49. doi: 10.1016/j.pbi.2018.05.001
|
[3] |
LIU J Y, CHEN N N, CHEN F, et al. Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera) [J]. BMC Genomics, 2014, 15: 281. doi: 10.1186/1471-2164-15-281
|
[4] |
ZHANG Y, GAO W L, LI H T, et al. Genome-wide analysis of the bZIP gene family in Chinese jujube (Ziziphus jujuba Mill. ) [J]. BMC Genomics, 2020, 21(1): 483. doi: 10.1186/s12864-020-06890-7
|
[5] |
NIJHAWAN A, JAIN M, TYAGI A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice [J]. Plant Physiology, 2008, 146(2): 323−324.
|
[6] |
WEI K F, CHEN J, WANG Y M, et al. Genome-wide analysis of bZIP-encoding genes in maize [J]. DNA Research, 2012, 19(6): 463−476. doi: 10.1093/dnares/dss026
|
[7] |
WANG J Z, ZHOU J X, ZHANG B L, et al. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on Sorghum [J]. Journal of Integrative Plant Biology, 2011, 53(3): 212−231. doi: 10.1111/j.1744-7909.2010.01017.x
|
[8] |
LIU M Y, WEN Y D, SUN W J, et al. Genome-wide identification, phylogeny, evolutionary expansion and expression analyses of bZIP transcription factor family in tartaty buckwheat [J]. BMC Genomics, 2019, 20(1): 483. doi: 10.1186/s12864-019-5882-z
|
[9] |
ZHOU Y, XU D X, JIA L D, et al. Genome-wide identification and structural analysis of bZIP transcription factor genes in Brassica napus [J]. Genes, 2017, 8(10): 288. doi: 10.3390/genes8100288
|
[10] |
YANG Y, YU T F, MA J, et al. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants [J]. International Journal of Molecular Sciences, 2020, 21(2): 670. doi: 10.3390/ijms21020670
|
[11] |
WANG Y Y, ZHANG Y J, ZHOU R, et al. Identification and characterization of the bZIP transcription factor family and its expression in response to abiotic stresses in sesame [J]. PLoS One, 2018, 13(7): e0200850. doi: 10.1371/journal.pone.0200850
|
[12] |
GAI W X, MA X, QIAO Y M, et al. Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L. ): CabZIP25 positively modulates the salt tolerance [J]. Frontiers in Plant Science, 2020, 11: 139. doi: 10.3389/fpls.2020.00139
|
[13] |
LI D Y, FU F Y, ZHANG H J, et al. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L. ) [J]. BMC Genomics, 2015, 16: 771. doi: 10.1186/s12864-015-1990-6
|
[14] |
YANG Z M, SUN J, CHEN Y, et al. Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida [J]. BMC Genetics, 2019, 20(1): 1−18. doi: 10.1186/s12863-018-0706-8
|
[15] |
BAILLO, KIMOTHO, ZHANG, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement [J]. Genes, 2019, 10(10): 771. doi: 10.3390/genes10100771
|
[16] |
THUROW C, SCHIERMEYER A, KRAWCZYK S, et al. Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development [J]. The Plant Journal, 2005, 44(1): 100−113. doi: 10.1111/j.1365-313X.2005.02513.x
|
[17] |
LINDEMOSE S, O'SHEA C, JENSEN M, et al. Structure, function and networks of transcription factors involved in abiotic stress responses [J]. International Journal of Molecular Sciences, 2013, 14(3): 5842−5878. doi: 10.3390/ijms14035842
|
[18] |
WANG W B, QIU X P, YANG Y X, et al. Sweetpotato bZIP transcription factor IbABF4 confers tolerance to multiple abiotic stresses [J]. Frontiers in Plant Science, 2019, 10: 630. doi: 10.3389/fpls.2019.00630
|
[19] |
ABE M. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex [J]. Science, 2005, 309(5737): 1052−1056. doi: 10.1126/science.1115983
|
[20] |
GANGAPPA S N, BOTTO J F. The multifaceted roles of HY5 in plant growth and development [J]. Molecular Plant, 2016, 9(10): 1353−1365. doi: 10.1016/j.molp.2016.07.002
|
[21] |
ZONG W, TANG N, YANG J, et al. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes [J]. Plant Physiology, 2016, 171(4): 2810−2825. doi: 10.1104/pp.16.00469
|
[22] |
HUANG C J, ZHOU J H, JIE Y C, et al. A ramie (Boehmeria nivea) bZIP transcription factor BnbZIP3 positively regulates drought, salinity and heavy metal tolerance [J]. Molecular Breeding, 2016, 36(8): 1−15.
|
[23] |
WANG J Y, LI Q, MAO X G, et al. Wheat transcription factor TaAREB3 participates in drought and freezing tolerances in Arabidopsis [J]. International Journal of Biological Sciences, 2016, 12(2): 257−269. doi: 10.7150/ijbs.13538
|
[24] |
FUKAZAWA J, SAKAI T, ISHIDA S, et al. REPRESSION OF SHOOT GROWTH, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins [J]. The Plant Cell, 2000, 12(6): 901−915. doi: 10.1105/tpc.12.6.901
|
[25] |
HE S, SHAN W, KUANG J F, et al. Molecular characterization of a stress-response bZIP transcription factor in banana [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2013, 113(2): 173−187. doi: 10.1007/s11240-012-0258-y
|
[26] |
TU M X, WANG X H, HUANG L, et al. Expression of a grape bZIP transcription factor, VqbZIP39, in transgenic Arabidopsis thaliana confers tolerance of multiple abiotic stresses [J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 125(3): 537−551. doi: 10.1007/s11240-016-0969-6
|
[27] |
LEE S C, CHOI H W, HWANG I S, et al. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses [J]. Planta, 2006, 224(5): 1209−1225. doi: 10.1007/s00425-006-0302-4
|
[28] |
SUN X L, LI Y, CAI H, et al. The Arabidopsis AtbZIP1 transcription factor is a positive regulator of plant tolerance to salt, osmotic and drought stresses [J]. Journal of Plant Research, 2012, 125(3): 429−438. doi: 10.1007/s10265-011-0448-4
|
[29] |
FENG Y, WANG Y, ZHANG G F, et al. Group-C/S1 bZIP heterodimers regulate MdIPT5b to negatively modulate drought tolerance in apple species [J]. The Plant Journal, 2021, 107(2): 399−417. doi: 10.1111/tpj.15296
|
[30] |
GAO S Q, CHEN M, XU Z S, et al. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants [J]. Plant Molecular Biology, 2011, 75(6): 537−553. doi: 10.1007/s11103-011-9738-4
|
[31] |
LIAO Y, ZOU H F, WEI W, et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis [J]. Planta, 2008, 228(2): 225−240. doi: 10.1007/s00425-008-0731-3
|
[32] |
PARA A, LI Y, MARSHALL-COLON A, et al. Hit-and-Run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis [J]. PNAS, 2014, 111(28): 10371−10376. doi: 10.1073/pnas.1404657111
|
[33] |
CHEN X B, YAO Q F, GAO X H, et al. Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition [J]. Current Biology, 2016, 26(5): 640−646. doi: 10.1016/j.cub.2015.12.066
|
[34] |
YANG J B, WANG M Y, LI W J, et al. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat [J]. Plant Biotechnology Journal, 2019, 17(9): 1823−1833. doi: 10.1111/pbi.13103
|
[35] |
JUE D W, SANG X L, LU S Q, et al. Genome-wide identification, phylogenetic and expression analyses of the ubiquitin-conjugating enzyme gene family in maize [J]. PLoS One, 2015, 10(11): e0143488. doi: 10.1371/journal.pone.0143488
|
[36] |
YING S, ZHANG D F, FU J, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis [J]. Planta, 2012, 235(2): 253−266. doi: 10.1007/s00425-011-1496-7
|
[37] |
CAO L R, LU X M, ZHANG P Y, et al. Systematic analysis of differentially expressed maize ZmbZIP genes between drought and rewatering transcriptome reveals bZIP family members involved in abiotic stress responses [J]. International Journal of Molecular Sciences, 2019, 20(17): 4103. doi: 10.3390/ijms20174103
|
[38] |
YANAGISAWA S, AKIYAMA A, KISAKA H, et al. Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions [J]. PNAS, 2004, 101(20): 7833−7838. doi: 10.1073/pnas.0402267101
|
[39] |
KURAI T, WAKAYAMA M, ABIKO T, et al. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions [J]. Plant Biotechnology Journal, 2011, 9(8): 826−837. doi: 10.1111/j.1467-7652.2011.00592.x
|
[40] |
HU B, WANG W, OU S J, et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies [J]. Nature Genetics, 2015, 47(7): 834−838. doi: 10.1038/ng.3337
|
[41] |
QU B Y, HE X, WANG J, et al. A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input [J]. Plant Physiology, 2015, 167(2): 411−423. doi: 10.1104/pp.114.246959
|
[42] |
LUANG S, SORNARAJ P, BAZANOVA N, et al. The wheat TabZIP2 transcription factor is activated by the nutrient starvation-responsive SnRK3/CIPK protein kinase [J]. Plant Molecular Biology, 2018, 96(6): 543−561. doi: 10.1007/s11103-018-0713-1
|