Citation: | WANG F, MU R, ZHANG W, et al. Full-length Transcriptomes of Tea Obtained by Oxford Nanopore Technology [J]. Fujian Journal of Agricultural Sciences,2021,36(10):1177−1186 doi: 10.19303/j.issn.1008-0384.2021.10.009 |
[1] |
夏丽飞, 孙云南, 宋维希, 等. 基于PacBio平台的紫娟茶树全长转录组分析 [J]. 基因组学与应用生物学, 2020, 39(6):2646−2658.
XIA L F, SUN Y N, SONG W X, et al. Full-length transcriptome analysis of Zijuan Tea(Camellia sinensis var. asssamica(Masters) kitamura) base on PacBio platform [J]. Genomics and Applied Biology, 2020, 39(6): 2646−2658.(in Chinese)
|
[2] |
谭晓琴, 李伟, 王聪明, 等. ‘紫嫣’和‘紫娟’茶树花青素及主要生化成分季节性的变化 [J]. 热带作物学报, 2021, 42(1):168−174.
TAN X Q, LI W, WANG C M, et al. Seasonal changes of anthocyanins and main biochemical components in ‘ziyan’ and ‘zijuan’ tea plants [J]. Chinese Journal of Tropical Crops, 2021, 42(1): 168−174.(in Chinese)
|
[3] |
孙云南, 许燕, 冉隆珣, 等. 茶树叶片响应茶饼病侵染的转录组分析 [J]. 茶叶科学, 2020, 40(1):113−124. doi: 10.3969/j.issn.1000-369X.2020.01.013
SUN Y N, XU Y, RAN L X, et al. Transcriptome analysis of the tea leaves (Camellia sinensis var. assamica) infected by tea blister blight [J]. Journal of Tea Science, 2020, 40(1): 113−124.(in Chinese) doi: 10.3969/j.issn.1000-369X.2020.01.013
|
[4] |
夏庭君, 吴强盛, 邵雅东, 等. 丛枝菌根真菌对福鼎大白茶生长、侧根数和根系内源激素的影响 [J]. 广西植物, 2018, 38(12):1635−1640. doi: 10.11931/guihaia.gxzw201804030
XIA T J, WU Q S, SHAO Y D, et al. Effects of arbuscular mycorrhizal fungi on growth, lateral root number and root endogenous hormones of Camellia sinensis ‘Fuding Dabaicha' [J]. Guihaia, 2018, 38(12): 1635−1640.(in Chinese) doi: 10.11931/guihaia.gxzw201804030
|
[5] |
MOLAN A L, DE S, MEAGHER L. Antioxidant activity and polyphenol content of green tea flavan-3-ols and oligomeric proanthocyanidins [J]. International Journal of Food Sciences and Nutrition, 2009, 60(6): 497−506. doi: 10.1080/09637480701781490
|
[6] |
ROSS J A, KASUM C M. Dietary flavonoids: Bioavailability, metabolic effects, and safety [J]. Annual Review of Nutrition, 2002, 22: 19−34. doi: 10.1146/annurev.nutr.22.111401.144957
|
[7] |
KHAN N, ADHAMI V M, MUKHTAR H. Apoptosis by dietary agents for prevention and treatment of cancer [J]. Biochemical Pharmacology, 2008, 76(11): 1333−1339. doi: 10.1016/j.bcp.2008.07.015
|
[8] |
翟秀明, 唐敏, 李解, 等. 基于RNA-Seq技术的茶树响应高温胁迫转录组差异性分析 [J]. 分子植物育种, 2020, 18(17):5629−5637.
ZHAI X M, TANG M, LI J, et al. Difference analysis of heat stress-responsive transcriptome of Camellia sinensis based on RNA-seq technology [J]. Molecular Plant Breeding, 2020, 18(17): 5629−5637.(in Chinese)
|
[9] |
廖天悦, 申铁. 基于转录组的福鼎大白茶叶片两种发育阶段的苯丙烷代谢合成途径分析比较 [J]. 贵州师范大学学报(自然科学版), 2021, 39(3):15−22.
LIAO T Y, SHEN T. Analysis and comparison of phenylpropane metabolic pathways in two developmental stages of Fuding Dabai tea leaves based on transcriptome [J]. Journal of Guizhou Normal University (Natural Sciences), 2021, 39(3): 15−22.(in Chinese)
|
[10] |
高香凤, 王让剑, 刘丰静, 等. 水培枝条取样法在茶树芽叶转录组测序中的可行性鉴定 [J]. 福建农业学报, 2017, 32(2):155−160.
GAO X F, WANG R J, LIU F J, et al. Hydroponic culturein sample preparation of tea shoots for RNA sequencing [J]. Fujian Journal of Agricultural Sciences, 2017, 32(2): 155−160.(in Chinese)
|
[11] |
JANSEN H J, LIEM M, JONG-RAADSEN S A, et al. Rapid de novo assembly of the European eel genome from nanopore sequencing reads [J]. Scientific Reports, 2017, 7: 7213. doi: 10.1038/s41598-017-07650-6
|
[12] |
FELLERS J P, WEBB C, FELLERS M C, et al. Wheat virus identification within infected tissue using nanopore sequencing technology [J]. Plant Disease, 2019, 103(9): 2199−2203. doi: 10.1094/PDIS-09-18-1700-RE
|
[13] |
GIORDANO F, AIGRAIN L, QUAIL M A, et al. De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms [J]. Scientific Reports, 2017, 7: 3935. doi: 10.1038/s41598-017-03996-z
|
[14] |
XIA E H, ZHANG H B, SHENG J, et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis [J]. Molecular Plant, 2017, 10(6): 866−877. doi: 10.1016/j.molp.2017.04.002
|
[15] |
XIA E H, TONG W, HOU Y, et al. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation [J]. Molecular Plant, 2020, 13(7): 1013−1026. doi: 10.1016/j.molp.2020.04.010
|
[16] |
CHEN J D, ZHENG C, MA J Q, et al. The chromosome-scale genome reveals the evolution and diversification after the recent tetraploidization event in tea plant [J]. Horticulture Research, 2020, 7: 63. doi: 10.1038/s41438-020-0288-2
|
[17] |
ZHANG Q J, LI W, LI K, et al. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons in driving genome size evolution [J]. Molecular Plant, 2020, 13(7): 935−938. doi: 10.1016/j.molp.2020.04.009
|
[18] |
ZHANG W Y, ZHANG Y J, QIU H J, et al. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties [J]. Nature Communications, 2020, 11: 3719. doi: 10.1038/s41467-020-17498-6
|
[19] |
GOODWIN S, MCPHERSON J D, MCCOMBIE W R. Coming of age: Ten years of next-generation sequencing technologies [J]. Nature Reviews Genetics, 2016, 17(6): 333−351. doi: 10.1038/nrg.2016.49
|
[20] |
RHOADS A, AU K F. PacBio sequencing and its applications [J]. Genomics, Proteomics & Bioinformatics, 2015, 13(5): 278−289.
|
[21] |
QIAO D H, YANG C, CHEN J, et al. Comprehensive identification of the full-length transcripts and alternative splicing related to the secondary metabolism pathways in the tea plant (Camellia sinensis) [J]. Scientific Reports, 2019, 9: 2709. doi: 10.1038/s41598-019-39286-z
|
[22] |
DHAR R, SEETHY A, PETHUSAMY K, et al. De novo assembly of the Indian blue peacock (Pavo cristatus) genome using Oxford Nanopore technology and Illumina sequencing [J]. GigaScience, 2019, 8(5): giz038. doi: 10.1093/gigascience/giz038
|
[23] |
DEBLADIS E, LLAURO C, CARPENTIER M C, et al. Detection of active transposable elements in Arabidopsis thaliana using Oxford Nanopore Sequencing technology [J]. BMC Genomics, 2017, 18(1): 1−8. doi: 10.1186/s12864-016-3406-7
|
[24] |
LIAO Y C, LIN S H, LIN H H. Completing bacterial genome assemblies: Strategy and performance comparisons [J]. Scientific Reports, 2015, 5: 8747. doi: 10.1038/srep08747
|
[25] |
SHIN S C, AHN D H, KIM S J, et al. Advantages of single-molecule real-time sequencing in high-GC content genomes [J]. PLoS One, 2013, 8(7): e68824. doi: 10.1371/journal.pone.0068824
|
[26] |
庞丹丹, 刘玉飞, 孙云南, 等. 苦茶全长转录组测序及基因结构分析 [J]. 西北农业学报, 2021, 30(4):563−571. doi: 10.7606/j.issn.1004-1389.2021.04.011
PANG D D, LIU Y F, SUN Y N, et al. Full-length transcriptome and gene structure analysis of kucha (Camellia sinensis) [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(4): 563−571.(in Chinese) doi: 10.7606/j.issn.1004-1389.2021.04.011
|
[27] |
WEI C L, YANG H, WANG S B, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality [J]. PNAS, 2018, 115(18): E4151−E4158. doi: 10.1073/pnas.1719622115
|
[28] |
ZHOU X B, LINDSAY H, ROBINSON M D. Robustly detecting differential expression in RNA sequencing data using observation weights [J]. Nucleic Acids Research, 2014, 42(11): e91. doi: 10.1093/nar/gku310
|
[29] |
LI H. Minimap2: pairwise alignment for nucleotide sequences [J]. Bioinformatics, 2018, 34(18): 3094−3100. doi: 10.1093/bioinformatics/bty191
|
[30] |
THIEL T, MICHALEK W, VARSHNEY R, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) [J]. Theoretical and Applied Genetics, 2003, 106(3): 411−422. doi: 10.1007/s00122-002-1031-0
|
[31] |
陈春林, 田易萍, 陈林波, 等. 基于荧光标记的紫娟茶树转录组EST-SSR标记开发 [J]. 江苏农业学报, 2018, 34(4):747−753. doi: 10.3969/j.issn.1000-4440.2018.04.005
CHEN C L, TIAN Y P, CHEN L B, et al. EST-SSR marker development of Zijuan tea tree transcriptome based on the fluorescent labeling [J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 747−753.(in Chinese) doi: 10.3969/j.issn.1000-4440.2018.04.005
|
[32] |
许明, 曾莉, 黄昕颖, 等. 藤茶转录组SSR分子标记开发与初步验证 [J]. 分子植物育种, 2020, 18(19):6441−6448.
XU M, ZENG L, HUANG X Y, et al. Development and identification of SSR molecular markers based on transcriptome sequences of Ampelopsis grossedentata [J]. Molecular Plant Breeding, 2020, 18(19): 6441−6448.(in Chinese)
|
[33] |
辛静, 李斌, 叶鹏, 等. 云南金花茶转录组序列分析及功能注释 [J]. 经济林研究, 2020, 38(3):85−94.
XIN J, LI B, YE P, et al. Transcriptome sequence analysis and functional annotation of Camellia fascicularis H. T. Chang [J]. Non-Wood Forest Research, 2020, 38(3): 85−94.(in Chinese)
|
[34] |
ZHENG Y, JIAO C, SUN H H, et al. iTAK: A program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases [J]. Molecular Plant, 2016, 9(12): 1667−1670. doi: 10.1016/j.molp.2016.09.014
|
[35] |
KONG L, ZHANG Y, YE Z Q, et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine [J]. Nucleic Acids Research, 2007, 35(S2): W345−W349. doi: 10.1093/nar/gkm391
|
[36] |
SUN L, LUO H T, BU D C, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts [J]. Nucleic Acids Research, 2013, 41(17): e166. doi: 10.1093/nar/gkt646
|
[37] |
WANG L G, PARK H J, DASARI S, et al. CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model [J]. Nucleic Acids Research, 2013, 41(6): e74. doi: 10.1093/nar/gkt006
|
[38] |
EL-GEBALI S, MISTRY J, BATEMAN A, et al. The Pfam protein families database in 2019 [J]. Nucleic Acids Research, 2019, 47(D1): D427−D432. doi: 10.1093/nar/gky995
|
[39] |
ANDERS S, HUBER W. Differential expression analysis for sequence count data [J]. Nature Precedings, 2010: 1.
|
[40] |
KASIANOWICZ J J, BEZRUKOV S M. On ‘three decades of nanopore sequencing’ [J]. Nature Biotechnology, 2016, 34(5): 481−482. doi: 10.1038/nbt.3570
|
[41] |
MAGI A, SEMERARO R, MINGRINO A, et al. Nanopore sequencing data analysis: State of the art, applications and challenges [J]. Briefings in Bioinformatics, 2018, 19(6): 1256−1272.
|
[42] |
JAIN M, OLSEN H E, PATEN B, et al. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community [J]. Genome Biology, 2016, 17(1): 1−11. doi: 10.1186/s13059-015-0866-z
|
[43] |
朱兴正, 夏丽飞, 陈林波, 等. 保护品种云茶1号茶树全长转录组测序分析 [J]. 茶叶科学, 2018, 38(2):193−201. doi: 10.3969/j.issn.1000-369X.2018.02.011
ZHU X Z, XIA L F, CHEN L B, et al. Full-length transcriptome analysis of protected cultivation ‘yuncha 1'(Camellia sinensis var assamica) [J]. Journal of Tea Science, 2018, 38(2): 193−201.(in Chinese) doi: 10.3969/j.issn.1000-369X.2018.02.011
|
[44] |
鞠烨, 江建平, 尹增芳, 等. 孝顺竹笋箨全长转录组测序分析 [J]. 南京林业大学学报(自然科学版), 2020, 44(6):175−183.
JU Y, JIANG J P, YIN Z F, et al. Full-length transcriptome sequencing and annotation analyses of Bambusa multiplex sheath [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(6): 175−183.(in Chinese)
|
[45] |
潘敏, 于旭东, 蔡泽坪, 等. 波罗蜜茎叶全长转录组分析 [J]. 热带作物学报, 2020, 41(7):1288−1297. doi: 10.3969/j.issn.1000-2561.2020.07.002
PAN M, YU X D, CAI Z P, et al. Transcriptome Data Analysis of Artocarpus heterophyllus stem and leaves [J]. Chines Journal of Tropical Crops, 2020, 41(7): 1288−1297.(in Chinese) doi: 10.3969/j.issn.1000-2561.2020.07.002
|