• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 36 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
LI F D. High-yield Cultivation Factors Optimizing and Blast-resistance Analysis for Hybrid Rice Variety Guangyou 673 [J]. Fujian Journal of Agricultural Sciences,2021,36(10):1126−1130 doi: 10.19303/j.issn.1008-0384.2021.10.002
Citation: LI F D. High-yield Cultivation Factors Optimizing and Blast-resistance Analysis for Hybrid Rice Variety Guangyou 673 [J]. Fujian Journal of Agricultural Sciences,2021,36(10):1126−1130 doi: 10.19303/j.issn.1008-0384.2021.10.002

High-yield Cultivation Factors Optimizing and Blast-resistance Analysis for Hybrid Rice Variety Guangyou 673

doi: 10.19303/j.issn.1008-0384.2021.10.002
  • Received Date: 2021-08-09
  • Rev Recd Date: 2021-10-01
  • Available Online: 2021-12-30
  • Publish Date: 2021-10-28
  •   Objective  In this study, essential agronomical practices of the hybrid rice variety Guangyou 673 and its resistance to rice blast were analyzed to provide a scientific basis for breeding new rice varieties with improved disease-resistant and to further expand the cultivation of Guangyou 673 variety.   Methods  Guangyou 673 was introduced for cultivation in Anxi County of Fujian Province. The impact of three essential agronomical practices, i.e., planting density (x1), nitrogen fertilization rate (x2) and seedling age (x3), on the performance of Guangyou 673 was evaluated. Regression models between grain yield and the above three agronomical factors were estimated to analyze the impact of agronomical practices on grain yield. The developed functional markers of the rice blast-resistance genes Pi2, Pi9 and Pigm were used to identify the blast-resistance genes in the genetic background of Guangyou 673.  Results  All the three studied agronomical practices revealed significant effects on grain yield of Guangyou 673. The results showed that shortening the seedling age which was with a long growth period necessitates more nitrogen fertilization to achieve higher grain yield. On the contrary, lengthening the seedling age which was with shorter growth period required less nitrogen fertilization. The maximum grain yield was achieved when planting density ranged from 2.052–2.748×106 clusters per ha, N fertilizer 144.70–183.76 kg·hm−2, and seedling age ranged from 26–33 days. Genotyping of Guangyou 673 with the functional molecular markers of Pi2, Pi9 and Pigm genes revealed that the variety Guangyou 673 contained the Pi2 blast-resistance gene.  Conclusion  Hybrid rice variety Guangyou 673 had great characteristics of high grain yield, blast resistance and moderate growth period. The high yield more than 8 250 kg·hm−2 could be achieved with N fertilizer 144.70–183.76 kg ·hm−2, average plant density 2.4×106 clusters per ha, and growth period 26–33 days. The results further suggested that Pi2 gene maybe the main source of blast resistance in Guangyou 673.
  • loading
  • [1]
    ROYCHOWDHURY M, JIA Y L, CARTWRIGHT R. Structure, function, and co-evolution of rice blast resistance genes [J]. Acta Agronomica Sinica, 2012, 38(3): 381−393. doi: 10.3724/SP.J.1006.2012.00381
    [2]
    张佩胜, 赵春德, 余宁, 等. 稻瘟病抗性基因的克隆及应用研究进展 [J]. 中国稻米, 2014, 20(5):1−7. doi: 10.3969/j.issn.1006-8082.2014.05.001

    ZHANG P S, ZHAO C D, YU N, et al. Recent progress on cloning and application of rice blast resistance genes [J]. China Rice, 2014, 20(5): 1−7.(in Chinese) doi: 10.3969/j.issn.1006-8082.2014.05.001
    [3]
    ZHANG N, LUO J, ROSSMAN A Y, et al. Generic names in Magnaporthales [J]. IMA Fungus, 2016, 7(1): 155−159. doi: 10.5598/imafungus.2016.07.01.09
    [4]
    胡朝芹, 刘剑宇, 王韵茜, 等. 粳稻子预44抗LP11稻瘟病菌基因pizy6(t)的定位 [J]. 植物学报, 2017, 52(1):61−69. doi: 10.11983/CBB16126

    HU C Q, LIU J Y, WANG Y Q, et al. Mapping of Pizy6(t), a gene conferring resistance to the rice blast strain LP11, in Oryza sativa subsp.japonica cultivar Ziyu44 [J]. Chinese Bulletin of Botany, 2017, 52(1): 61−69.(in Chinese) doi: 10.11983/CBB16126
    [5]
    张晓慧, 冯晓敏, 林少扬. 水稻主栽品种空育131抗稻瘟病位点的扫描及其基因组重构建 [J]. 植物学报, 2017, 52(1):30−42. doi: 10.11983/CBB16107

    ZHANG X H, FENG X M, LIN S Y. Scanning for Pi loci and rebuilding an improved genome of elite rice variety kongyu 131 [J]. Chinese Bulletin of Botany, 2017, 52(1): 30−42.(in Chinese) doi: 10.11983/CBB16107
    [6]
    杨德卫, 李生平, 崔海涛, 等. 寄主植物与病原菌免疫反应的分子遗传基础 [J]. 遗传, 2020, 42(3):278−294.

    YANG D W, LI S P, CUI H T, et al. Molecular genetic mechanisms of interaction between host plants and pathogens [J]. Hereditas, 2020, 42(3): 278−294.(in Chinese)
    [7]
    杨德卫, 王莫, 韩利波, 等. 水稻稻瘟病抗性基因的克隆、育种利用及稻瘟菌无毒基因研究进展 [J]. 植物学报, 2019, 54(2):265−276. doi: 10.11983/CBB18194

    YANG D W, WANG M, HAN L B, et al. Progress of cloning and breeding application of blast resistance genes in rice and avirulence genes in blast fungi [J]. Chinese Bulletin of Botany, 2019, 54(2): 265−276.(in Chinese) doi: 10.11983/CBB18194
    [8]
    茆诗松, 丁元, 周纪芗, 等. 回归分析及其试验设计[M]. 2版. 上海: 华东师范大学出版社, 1981: 23-68.
    [9]
    田大刚, 王锋, 陈松彪, 等. 一种稻瘟病抗性基因座Pi2/9功能基因分子标记及其应用: 中国, CN201810054310. X[P] . 2021-03-26.
    [10]
    朱永生, 董瑞霞, 谢鸿光, 等. 高产抗病杂交稻新品种广优673的选育 [J]. 福建农业学报, 2018, 33(7):683−686.

    ZHU Y S, DONG R X, XIE H G, et al. Breeding high-yield, high-resistance hybrid rice, guangyou 673 [J]. Fujian Journal of Agricultural Sciences, 2018, 33(7): 683−686.(in Chinese)
    [11]
    徐中儒. 回归分析与试验设计[M]. 北京: 中国农业出版社, 1998: 58-154.
    [12]
    佟立伟. 多元统计分析计算机程序[M]. 北京: 中国农业科学技术出版社, 1995: 3-88.
    [13]
    CHEN H L, CHEN B T, ZHANG D P, et al. Pathotypes of Pyricularia grisea in rice fields of central and Southern China [J]. Plant Disease, 2001, 85(8): 843−850. doi: 10.1094/PDIS.2001.85.8.843
    [14]
    LIU G, LU G, ZENG L, et al. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6 [J]. Molecular Genetics and Genomics, 2002, 267(4): 472−480. doi: 10.1007/s00438-002-0677-2
    [15]
    ZHOU B, QU S H, LIU G F, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea [J]. Molecular Plant Microbe Interactions, 2006, 19(11): 1216−1228. doi: 10.1094/MPMI-19-1216
    [16]
    DENG Y W, ZHAI K R, XIE Z, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance [J]. Science, 2017, 355(6328): 962−965. doi: 10.1126/science.aai8898
    [17]
    QU S H, LIU G F, ZHOU B, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice [J]. Genetics, 2006, 172(3): 1901−1914. doi: 10.1534/genetics.105.044891
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(4)

    Article Metrics

    Article views (360) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return