Citation: | LI F D. High-yield Cultivation Factors Optimizing and Blast-resistance Analysis for Hybrid Rice Variety Guangyou 673 [J]. Fujian Journal of Agricultural Sciences,2021,36(10):1126−1130 doi: 10.19303/j.issn.1008-0384.2021.10.002 |
[1] |
ROYCHOWDHURY M, JIA Y L, CARTWRIGHT R. Structure, function, and co-evolution of rice blast resistance genes [J]. Acta Agronomica Sinica, 2012, 38(3): 381−393. doi: 10.3724/SP.J.1006.2012.00381
|
[2] |
张佩胜, 赵春德, 余宁, 等. 稻瘟病抗性基因的克隆及应用研究进展 [J]. 中国稻米, 2014, 20(5):1−7. doi: 10.3969/j.issn.1006-8082.2014.05.001
ZHANG P S, ZHAO C D, YU N, et al. Recent progress on cloning and application of rice blast resistance genes [J]. China Rice, 2014, 20(5): 1−7.(in Chinese) doi: 10.3969/j.issn.1006-8082.2014.05.001
|
[3] |
ZHANG N, LUO J, ROSSMAN A Y, et al. Generic names in Magnaporthales [J]. IMA Fungus, 2016, 7(1): 155−159. doi: 10.5598/imafungus.2016.07.01.09
|
[4] |
胡朝芹, 刘剑宇, 王韵茜, 等. 粳稻子预44抗LP11稻瘟病菌基因pizy6(t)的定位 [J]. 植物学报, 2017, 52(1):61−69. doi: 10.11983/CBB16126
HU C Q, LIU J Y, WANG Y Q, et al. Mapping of Pizy6(t), a gene conferring resistance to the rice blast strain LP11, in Oryza sativa subsp.japonica cultivar Ziyu44 [J]. Chinese Bulletin of Botany, 2017, 52(1): 61−69.(in Chinese) doi: 10.11983/CBB16126
|
[5] |
张晓慧, 冯晓敏, 林少扬. 水稻主栽品种空育131抗稻瘟病位点的扫描及其基因组重构建 [J]. 植物学报, 2017, 52(1):30−42. doi: 10.11983/CBB16107
ZHANG X H, FENG X M, LIN S Y. Scanning for Pi loci and rebuilding an improved genome of elite rice variety kongyu 131 [J]. Chinese Bulletin of Botany, 2017, 52(1): 30−42.(in Chinese) doi: 10.11983/CBB16107
|
[6] |
杨德卫, 李生平, 崔海涛, 等. 寄主植物与病原菌免疫反应的分子遗传基础 [J]. 遗传, 2020, 42(3):278−294.
YANG D W, LI S P, CUI H T, et al. Molecular genetic mechanisms of interaction between host plants and pathogens [J]. Hereditas, 2020, 42(3): 278−294.(in Chinese)
|
[7] |
杨德卫, 王莫, 韩利波, 等. 水稻稻瘟病抗性基因的克隆、育种利用及稻瘟菌无毒基因研究进展 [J]. 植物学报, 2019, 54(2):265−276. doi: 10.11983/CBB18194
YANG D W, WANG M, HAN L B, et al. Progress of cloning and breeding application of blast resistance genes in rice and avirulence genes in blast fungi [J]. Chinese Bulletin of Botany, 2019, 54(2): 265−276.(in Chinese) doi: 10.11983/CBB18194
|
[8] |
茆诗松, 丁元, 周纪芗, 等. 回归分析及其试验设计[M]. 2版. 上海: 华东师范大学出版社, 1981: 23-68.
|
[9] |
田大刚, 王锋, 陈松彪, 等. 一种稻瘟病抗性基因座Pi2/9功能基因分子标记及其应用: 中国, CN201810054310. X[P] . 2021-03-26.
|
[10] |
朱永生, 董瑞霞, 谢鸿光, 等. 高产抗病杂交稻新品种广优673的选育 [J]. 福建农业学报, 2018, 33(7):683−686.
ZHU Y S, DONG R X, XIE H G, et al. Breeding high-yield, high-resistance hybrid rice, guangyou 673 [J]. Fujian Journal of Agricultural Sciences, 2018, 33(7): 683−686.(in Chinese)
|
[11] |
徐中儒. 回归分析与试验设计[M]. 北京: 中国农业出版社, 1998: 58-154.
|
[12] |
佟立伟. 多元统计分析计算机程序[M]. 北京: 中国农业科学技术出版社, 1995: 3-88.
|
[13] |
CHEN H L, CHEN B T, ZHANG D P, et al. Pathotypes of Pyricularia grisea in rice fields of central and Southern China [J]. Plant Disease, 2001, 85(8): 843−850. doi: 10.1094/PDIS.2001.85.8.843
|
[14] |
LIU G, LU G, ZENG L, et al. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6 [J]. Molecular Genetics and Genomics, 2002, 267(4): 472−480. doi: 10.1007/s00438-002-0677-2
|
[15] |
ZHOU B, QU S H, LIU G F, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea [J]. Molecular Plant Microbe Interactions, 2006, 19(11): 1216−1228. doi: 10.1094/MPMI-19-1216
|
[16] |
DENG Y W, ZHAI K R, XIE Z, et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance [J]. Science, 2017, 355(6328): 962−965. doi: 10.1126/science.aai8898
|
[17] |
QU S H, LIU G F, ZHOU B, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice [J]. Genetics, 2006, 172(3): 1901−1914. doi: 10.1534/genetics.105.044891
|