• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 36 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
LIU J X, LIU J, YANG T Y, et al. Cloning and Analysis of Reverse Transcriptase Gene of Ty3-gypsy-like Retrotransposons in Sugarcane [J]. Fujian Journal of Agricultural Sciences,2021,36(9):989−998 doi: 10.19303/j.issn.1008-0384.2021.09.001
Citation: LIU J X, LIU J, YANG T Y, et al. Cloning and Analysis of Reverse Transcriptase Gene of Ty3-gypsy-like Retrotransposons in Sugarcane [J]. Fujian Journal of Agricultural Sciences,2021,36(9):989−998 doi: 10.19303/j.issn.1008-0384.2021.09.001

Cloning and Analysis of Reverse Transcriptase Gene of Ty3-gypsy-like Retrotransposons in Sugarcane

doi: 10.19303/j.issn.1008-0384.2021.09.001
  • Received Date: 2021-05-30
  • Rev Recd Date: 2021-07-25
  • Available Online: 2021-10-23
  • Publish Date: 2021-09-28
  •   Objective  The reverse transcriptase (RT) gene sequences of Ty3-gypsy-like retrotransposons were isolated from the sugarcane genome, and their characteristics, differences, and phylogenetic relationships analyzed to study the transcriptional activities and regulatory functions associated with the retrotransposons.   Method  Degenerate primers were designed according to the conserved region of the RT gene sequences of Ty3-gypsy-like retrotransposons. The genomic DNA of sugarcane variety, ROC22, was amplified by PCR. The recovered, cloned, and sequenced target band was analyzed by bioinformatics.   Result  Thirty-six RT gene sequences were successfully isolated. Only one sequence of the target bands was 430 bp in length, while the remainders were 432 bp. The proportions of AT in the sequence ranged from 56.71% to 64.81%, and the ratio of AT to GC from 1.31 to 1.84. A high heterogeneity existed among the nucleotide sequences, as the similarity was shown to be 46.2% to 99.3%. The cluster analysis divided the 36 RT gene sequences into 5 families. Family I and Family IV contained most of the sequences. After translated into amino acids, 6 sequences displayed nonsense mutations. The similarity between amino acid sequences ranged from 10.1% to 100% exhibiting a high degree of heterogeneity. The conserved motifs of 34 of the sequences were identical, indicating a highly conservative property. The overall configuration of the tertiary structure of the representative proteins in each family was basically similar, however, there were significant differences in the number of hydrogen bonds and turns, suggesting a certain degree of heterogeneity and polymorphism. The phylogenetic tree showed 7 distinct groups among the RT gene sequences. Of which, 18 in Group I were highly homology with BAB40828.1 of Arabidopsis thaliana, and SoRT3-26 in Group VII was genetically closest to the BAB40834.1 of soybean, BAB40833.1 of spinach, and BAB40824.1 of japonica rice. It indicated that a horizontal transfer of Ty3-gypsy-like retrotransposons might have occurred in evolution between sugarcane and those plant species. By comparing the sugarcane EST database, 10 Ty3-gypsy-like retrotransposons were found with transcriptional activity in ROC22.   Conclusion  Thirty-six RT gene sequences of Ty3-gypsy-like retrotransposons in sugarcane were obtained with 10 of them showing a transcriptional activity. The results provided the basic information for the isolation of full-length Ty3-gypsy-like retrotransposons, further understanding of the transcriptional, transposon activity and functions of the retrotransposons, and the development of sugarcane molecular markers based on LTR retrotransposons.
  • loading
  • [1]
    WAUGH R, MCLEAN K, FLAVELL A J, et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP) [J]. Molecular and General Genetics, 1997, 253(6): 687−694. doi: 10.1007/s004380050372
    [2]
    KALENDAR R, GROB T, REGINA M, et al. IRAP and REMAP: Two new retrotransposon-based DNA fingerprinting techniques [J]. Theoretical and Applied Genetics, 1999, 98(5): 704−711. doi: 10.1007/s001220051124
    [3]
    FLAVELL A J, KNOX M R, PEARCE S R, et al. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis [J]. The Plant Journal, 1998, 16(5): 643−650. doi: 10.1046/j.1365-313x.1998.00334.x
    [4]
    吴子莺, 杨善, 钱旺, 等. 甘蔗属大茎野生种Ty1-copia反转录转座子逆转录酶序列克隆与特点分析 [J]. 植物遗传资源学报, 2020, 21(2):466−476.

    WU Z Y, YANG S, QIAN W, et al. Cloning and characterisation of reverse transcriptase sequences of Ty1-copia retrotransposon in Saccharum robustum [J]. Journal of Plant Genetic Resources, 2020, 21(2): 466−476.(in Chinese)
    [5]
    RAZA S, ANJUM S, QAMARUNISA S, et al. Genome analysis of sugarcane (cultivar BL4) to investigate transposable elements [J]. Pakistan Journal of Biochemistry and Molecular Biology, 2011, 44(2): 68−72.
    [6]
    ROSSI M, ARAUJO P G, VAN SLUYS M A. Survey of transposable elements in sugarcane expressed sequence tags (ESTs) [J]. Genetics and Molecular Biology, 2001, 24(1/2/3/4): 147−154.
    [7]
    ROSSI M, ARAUJO P G, JESUS E M, et al. Comparative analysis of Mutator -like transposases in sugarcane [J]. Molecular Genetics and Genomics, 2004, 272(2): 194−203. doi: 10.1007/s00438-004-1036-2
    [8]
    ARAUJO P G, ROSSI M, JESUS E M, et al. Transcriptionally active transposable elements in recent hybrid sugarcane [J]. The Plant Journal, 2005, 44(5): 707−717. doi: 10.1111/j.1365-313X.2005.02579.x
    [9]
    DE JESUS E M, OCHOA CRUZ E A, CRUZ G M Q, et al. Diversification of hAT transposase paralogues in the sugarcane genome [J]. Molecular Genetics and Genomics, 2012, 287(3): 205−219. doi: 10.1007/s00438-011-0670-8
    [10]
    NAKAYAMA S. Inter-MITE polymorphisms of a newly identified MITE show relationships among sugarcane (Saccharum) species [J]. Genetic Resources and Crop Evolution, 2012, 59(7): 1389−1396. doi: 10.1007/s10722-011-9766-6
    [11]
    ZHANG J S, SHARMA A, YU Q Y, et al. Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum [J]. BMC Genomics, 2016, 17: 446. doi: 10.1186/s12864-016-2817-9
    [12]
    ZHANG J S, ZHANG X T, TANG H B, et al. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L [J]. Nature Genetics, 2018, 50(11): 1565−1573. doi: 10.1038/s41588-018-0237-2
    [13]
    刘俊仙, 熊发前, 刘菁, 等. 用于克隆及分子标记分析的甘蔗高质量基因组DNA提取方法 [J]. 分子植物育种, 2019, 17(2):545−552.

    LIU J X, XIONG F Q, LIU J, et al. High quality sugarcane DNA extraction methods for cloning and molecular marker analysis [J]. Molecular Plant Breeding, 2019, 17(2): 545−552.(in Chinese)
    [14]
    KUMEKAWA N, OHTSUBO E, OHTSUBO H. Identification and phylogenetic analysis of Gypsy-type retrotransposons in the plant kingdom [J]. Genes & Genetic Systems, 1999, 74(6): 299−307.
    [15]
    熊发前, 刘俊仙, 刘菁, 等. 花生DNA的五种改良CTAB提取方法的比较分析及其应用 [J]. 分子植物育种, 2019, 17(7):2207−2216.

    XIONG F Q, LIU J X, LIU J, et al. Comparative analysis and application of five improved CTAB extraction methods for peanut DNA [J]. Molecular Plant Breeding, 2019, 17(7): 2207−2216.(in Chinese)
    [16]
    阳太亿, 刘俊仙, 刘菁, 等. 四倍体野生种花生Ty1-copia类逆转座子逆转录酶基因的克隆与分析 [J]. 山东农业科学, 2019, 51(9):9−20.

    YANG T Y, LIU J X, LIU J, et al. Cloning and analysis of reverse transcriptase of Ty1-copia-like retrotransposons in Arachis monticola [J]. Shandong Agricultural Sciences, 2019, 51(9): 9−20.(in Chinese)
    [17]
    王庆竹, 李慧平, 文晓鹏, 等. 桂花LTR类反转录转座子RT序列的克隆及分析 [J]. 园艺学报, 2018, 45(2):309−320.

    WANG Q Z, LI H P, WEN X P, et al. Cloning and analysis of reverse transcriptase of LTR retrotransposons in Osmanthus fragrans [J]. Acta Horticulturae Sinica, 2018, 45(2): 309−320.(in Chinese)
    [18]
    侯小改, 郭大龙, 黄燕梅, 等. 牡丹Ty3-gypsy类反转录转座子反转录酶序列的克隆及分析 [J]. 园艺学报, 2013, 40(1):98−106.

    HOU X G, GUO D L, HUANG Y M, et al. Cloning and analysis of reverse trancriptase of Ty3-Gypsy-like retrotransposons in tree peony(Paeonia) [J]. Acta Horticulturae Sinica, 2013, 40(1): 98−106.(in Chinese)
    [19]
    彭磊, 吴艳, 刘小翠, 等. 火龙果Ty3-gypsy类反转录转座子反转录酶序列的克隆及分析 [J]. 果树学报, 2017, 34(2):186−195.

    PENG L, WU Y, LIU X C, et al. Cloning and analysis of reverse transcriptase of Ty3-Gypsy retrotransposon in Hylocereus undatus [J]. Journal of Fruit Science, 2017, 34(2): 186−195.(in Chinese)
    [20]
    张文波, 陈凌, 李雪辉, 等. 兴安落叶松Ty3-gypsy类逆转座子逆转录酶的多样性分析 [J]. 分子植物育种, 2016, 14(5):1098−1106.

    ZHANG W B, CHEN L, LI X H, et al. Sequence diversity analysis of reverse transcriptases of Ty3-Gypsy-like retrotransposons in Larix gmelinii [J]. Molecular Plant Breeding, 2016, 14(5): 1098−1106.(in Chinese)
    [21]
    白杨, 林晓飞, 张文波. 杂交构树Ty3-gypsy类逆转座子逆转录酶序列的多样性分析 [J]. 分子植物育种, 2018, 16(22):7429−7437.

    BAI Y, LIN X F, ZHANG W B. Diversity analysis of Ty3-Gypsy-like retrotransposon reverse transposases in Broussonetia papyrifera L. vent [J]. Molecular Plant Breeding, 2018, 16(22): 7429−7437.(in Chinese)
    [22]
    TANG Y M, MA Y Z, LI L C, et al. Identification and characterization of reverse transcriptase domain of transcriptionally active retrotransposons in wheat genomes [J]. Journal of Integrative Plant Biology, 2005, 47(5): 604−612. doi: 10.1111/j.1744-7909.2005.00055.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (681) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return