• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 36 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
WU P P, TANG Z Z, YANG L, et al. Visualization of Rice Root System by 3D Modeling: A Review [J]. Fujian Journal of Agricultural Sciences,2021,36(8):972−980 doi: 10.19303/j.issn.1008-0384.2021.08.015
Citation: WU P P, TANG Z Z, YANG L, et al. Visualization of Rice Root System by 3D Modeling: A Review [J]. Fujian Journal of Agricultural Sciences,2021,36(8):972−980 doi: 10.19303/j.issn.1008-0384.2021.08.015

Visualization of Rice Root System by 3D Modeling: A Review

doi: 10.19303/j.issn.1008-0384.2021.08.015
  • Received Date: 2021-04-01
  • Rev Recd Date: 2021-07-23
  • Available Online: 2021-08-10
  • Publish Date: 2021-08-28
  • As an organ that extracts water and nutrients from the soil, the root system is vital for a rice plant. Establishing a 3D model to visualize the system structure can materially help the studies on the morphology and functional traits of the roots. Recent advancements in the computerized and non-invasive technologies make the information digitization for scientific research increasingly accessible and significant progresses possible. For instance, utilizing hand drawings and computer tomography (CT), mathematical models were built to vividly simulate the configuration of unearthed root system. Since data acquisition that proceeds model building is essential for an accurate and reliable representation, this article compares and analyzes the principles and characteristics of two classes of detection methods for information collection on the root systems. These methods can be either destructive or in-situ in applications depending upon whether or not the original growth environment was interrupted or destroyed. The 3D modeling and visualization of rice root system is explained in this article from the aspects of manual observation and measurement, machinery vision, 3D digitization by optical instruments, and tomography, etc. The mainstream reconstruction technologies are classified, compared, and analyzed with respect to the pros and cons on the resulting effect as well as the cost and ease of operation. Since environmental conditions are ever-changing, the development of a root system is invariably complex and varied. The affecting factors include the firmness, moisture content, and nutrients distribution of the soil a plant grows on. In addition, the non-transparency and instability of soil has so far hindered the related studies and confined to the fundamental and non-environmental elements, such as, depth of layer and time, for statistical analysis. Consequently, few reports dealt with the dynamic interactions among the multi-environmental factors that effect on the root development are available. Evidently, in the foreseeable future, the newly developed modeling and visualization technologies would usher in innovative applications and deep understanding in the field of study.
  • loading
  • [1]
    SAMYOR D, DAS A B, DEKA S C. Pigmented rice a potential source of bioactive compounds: A review [J]. International Journal of Food Science & Technology, 2017, 52(5): 1073−1081.
    [2]
    SMITH S, DE SMET I. Root system architecture: Insights from Arabidopsis and cereal crops [J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1595): 1441−1452. doi: 10.1098/rstb.2011.0234
    [3]
    KRESZIES T, SCHREIBER L, RANATHUNGE K. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species [J]. Journal of Plant Physiology, 2018, 227: 75−83. doi: 10.1016/j.jplph.2018.02.002
    [4]
    赵春江, 陆声链, 郭新宇, 等. 数字植物研究进展: 植物形态结构三维数字化 [J]. 中国农业科学, 2015, 48(17):3415−3428. doi: 10.3864/j.issn.0578-1752.2015.17.009

    ZHAO C J, LU S L, GUO X Y, et al. Advances in research of digital plant: 3D digitization of plant morphological structure [J]. Scientia Agricultura Sinica, 2015, 48(17): 3415−3428.(in Chinese) doi: 10.3864/j.issn.0578-1752.2015.17.009
    [5]
    黄伟. 基于植物生长过程仿真的虚拟植物建模研究[D]. 重庆: 重庆大学, 2011.

    HUANG W. Study on growth modeling of virtual plant based on simulation of growth process[D]. Chongqing: Chongqing University, 2011. (in Chinese).
    [6]
    温维亮, 郭新宇, 赵春江, 等. 作物根系构型三维探测与重建方法研究进展 [J]. 中国农业科学, 2015, 48(3):436−448. doi: 10.3864/j.issn.0578-1752.2015.03.04

    WEN W L, GUO X Y, ZHAO C J, et al. Crop roots configuration and visualization: A review [J]. Scientia Agricultura Sinica, 2015, 48(3): 436−448.(in Chinese) doi: 10.3864/j.issn.0578-1752.2015.03.04
    [7]
    尤号田, 邢艳秋, 彭涛, 等. LiDAR不同强度校正法对樟子松叶面积指数估测的影响 [J]. 测绘学报, 2018, 47(2):170−179. doi: 10.11947/j.AGCS.2018.20170515

    YOU H T, XING Y Q, PENG T, et al. Effects of different LiDAR intensity normalization methods on Scotch pine forest leaf area index estimation [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 170−179.(in Chinese) doi: 10.11947/j.AGCS.2018.20170515
    [8]
    梁欢, 顾庆毅. 一种基于结构光的运动补偿3D测量方法: CN106595502A[P]. 2017-04-26.
    [9]
    周静静, 郭新宇, 吴升, 等. 基于多视角图像的植物三维重建研究进展 [J]. 中国农业科技导报, 2019, 21(2):9−18.

    ZHOU J J, GUO X Y, WU S, et al. Research progress on plant three-dimensional reconstruction based on multi-view images [J]. Journal of Agricultural Science and Technology, 2019, 21(2): 9−18.(in Chinese)
    [10]
    翁杨, 曾睿, 吴陈铭, 等. 基于深度学习的农业植物表型研究综述 [J]. 中国科学: 生命科学, 2019, 49(6):698−716. doi: 10.1360/SSV-2019-0020

    WENG Y, ZENG R, WU C M, et al. A survey on deep-learning-based plant phenotype research in agriculture [J]. Scientia Sinica (Vitae), 2019, 49(6): 698−716.(in Chinese) doi: 10.1360/SSV-2019-0020
    [11]
    DIEVART A, COUDERT Y, GANTET P, et al. Dissecting the biological bases of traits of interest in rice: Architecture and development of the root system [J]. Cahiers Agricultures, 2013, 22(5): 475−483. doi: 10.1684/agr.2013.0651
    [12]
    STEFANELLI D, FRIDMAN Y, PERRY RL. DigiRootTM: New software for root studies [J]. European Journal of Horticultural Science, 2009, 74(4). doi: 10.2307/24126478
    [13]
    DELORY B M, BAUDSON C, BROSTAUX Y, et al. archiDART: an R package for the automated computation of plant root architectural traits [J]. Plant and Soil, 2016, 398(1/2): 351−365.
    [14]
    GONZÁLEZ A, SEVILLANO X, BETEGÓN-PUTZE I, et al. MyROOT 2.0: An automatic tool for high throughput and accurate primary root length measurement [J]. Computers and Electronics in Agriculture, 2020, 168: 105125. doi: 10.1016/j.compag.2019.105125
    [15]
    TRACHSEL S, KAEPPLER S M, BROWN K M, et al. Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field [J]. Plant and Soil, 2011, 341(1/2): 75−87.
    [16]
    胡琪娟, 王霖娇, 盛茂银. 植物细根生产和周转研究进展 [J]. 世界林业研究, 2019, 32(2):29−34.

    HU Q J, WANG L J, SHENG M Y. Research progress of plant fine root production and turnover [J]. World Forestry Research, 2019, 32(2): 29−34.(in Chinese)
    [17]
    管建慧, 郭新宇, 王纪华, 等. 玉米不同部位根系生长发育规律的研究 [J]. 玉米科学, 2007, 15(6):82−85, 88. doi: 10.3969/j.issn.1005-0906.2007.06.019

    GUAN J H, GUO X Y, WANG J H, et al. Study on growth and development rule of different parts of maize root [J]. Journal of Maize Sciences, 2007, 15(6): 82−85, 88.(in Chinese) doi: 10.3969/j.issn.1005-0906.2007.06.019
    [18]
    WU J, GUO Y. An integrated method for quantifying root architecture of field-grown maize [J]. Annals of Botany, 2014, 114(4): 841−851. doi: 10.1093/aob/mcu009
    [19]
    杨乐, 彭军, 杨红云, 等. 基于微分L-系统的水稻根系三维生长模型研究 [J]. 农业机械学报, 2019, 50(10):208−214. doi: 10.6041/j.issn.1000-1298.2019.10.023

    YANG L, PENG J, YANG H Y, et al. Three dimensional growth modeling of rice root based on differential L-system [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 208−214.(in Chinese) doi: 10.6041/j.issn.1000-1298.2019.10.023
    [20]
    牛学礼, 南志标. 运用微根管技术研究草地植物细根的进展 [J]. 草业学报, 2017, 26(11):205−215. doi: 10.11686/cyxb2017041

    NIU X L, NAN Z B. Review of minirhizotron applications for study of fine roots in grassland [J]. Acta Prataculturae Sinica, 2017, 26(11): 205−215.(in Chinese) doi: 10.11686/cyxb2017041
    [21]
    YANG L, WU P P, YANG S Y, et al. Research on the construction and visualization of a three-dimensional model of rice root growth [J]. Applied Engineering in Agriculture, 2020, 36(6): 847−857. doi: 10.13031/aea.13543
    [22]
    HAN T H, KUO Y F. Developing a system for three-dimensional quantification of root traits of rice seedlings [J]. Computers and Electronics in Agriculture, 2018, 152: 90−100. doi: 10.1016/j.compag.2018.07.001
    [23]
    FANG S Q, YAN X L, LIAO H. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research [J]. The Plant Journal, 2009, 60(6): 1096−1108. doi: 10.1111/j.1365-313X.2009.04009.x
    [24]
    ROGERS E D, MONAENKOVA D, MIJAR M, et al. X-ray computed tomography reveals the response of root system architecture to soil texture [J]. Plant Physiology, 2016, 171(3): 2028−2040. doi: 10.1104/pp.16.00397
    [25]
    TERAMOTO S, TAKAYASU S, KITOMI Y, et al. High-throughput three-dimensional visualization of root system architecture of rice using X-ray computed tomography [J]. Plant Methods, 2020, 16: 66. doi: 10.1186/s13007-020-00612-6
    [26]
    GERTH S, CLAUßEN J, EGGERT A, et al. Semiautomated 3D root segmentation and evaluation based on X-ray CT imagery [J]. Plant Phenomics, 2021, 2021: 1−13.
    [27]
    向子云, 罗锡文, 周学成, 等. 多层螺旋CT三维成像技术观测植物根系的实验研究 [J]. CT理论与应用研究, 2006, 15(3):1−5. doi: 10.3969/j.issn.1004-4140.2006.03.001

    XIANG Z Y, LUO X W, ZHOU X C, et al. Experimental study on observation of original shape of crop root system with multi helical CT technology [J]. Computerized Tomography Theory and Applications, 2006, 15(3): 1−5.(in Chinese) doi: 10.3969/j.issn.1004-4140.2006.03.001
    [28]
    周学成, 罗锡文, 严小龙, 等. 基于遗传算法的原位根系CT图像的模糊阈值分割 [J]. 中国图象图形学报, 2009, 14(4):681−687. doi: 10.11834/jig.20090418

    ZHOU X C, LUO X W, YAN X L, et al. A fuzzy thresholding segmentation for plant root CT images based on genetic algorithm [J]. Journal of Image and Graphics, 2009, 14(4): 681−687.(in Chinese) doi: 10.11834/jig.20090418
    [29]
    TOPP C N, IYER-PASCUZZI A S, ANDERSON J T, et al. 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture [J]. PNAS, 2013, 110(18): E1695−E1704. doi: 10.1073/pnas.1304354110
    [30]
    KUTSAHERA L. Wurzelatlas mitteleuropaischer ackerunkrauter und kulturpflanzen [J]. Economic Botany, 1963, 17(2): 158−159. doi: 10.2307/4252435
    [31]
    PAGÈS L, VERCAMBRE G, DROUET J L, et al. Root Typ: A generic model to depict and analyse the root system architecture [J]. Plant and Soil, 2004, 258(1): 103−119. doi: 10.1023/B:PLSO.0000016540.47134.03
    [32]
    PAGES L, MOREAU D, SARLIKIOTI V, et al. ArchiSimple: A parsimonious model of the root system architecture[C]. //Plant Growth Modeling, Simulation, Visualization and Applications.:Institute of Electrical and Electronics Engineers, 2012:297-303.
    [33]
    徐其军, 汤亮, 顾东祥, 等. 基于形态参数的水稻根系三维建模及可视化 [J]. 农业工程学报, 2010, 26(10):188−194. doi: 10.3969/j.issn.1002-6819.2010.10.032

    XU Q J, TANG L, GU D X, et al. Architectural parameter-based three dimensional modeling and visualization of rice roots [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10): 188−194.(in Chinese) doi: 10.3969/j.issn.1002-6819.2010.10.032
    [34]
    房燕. 基于人工生命的骆驼刺根系的模型构建与研究[D]. 长春: 东北师范大学, 2011.

    FANG Y. Construction and research of Alhagi roots model based on artificial life[D]. Changchun: Northeast Normal University, 2011. (in Chinese).
    [35]
    GE Y, GE Z Y, YI H F, et al. Visual simulation of upland rice root as related to soil compaction[C]//2011 Second International Conference on Digital Manufacturing & Automation. August 5-7, 2011, Zhangjiajie, China. IEEE, 2011: 1392−1394.
    [36]
    LEITNER D, KLEPSCH S, BODNER G, et al. A dynamic root system growth model based on L-Systems [J]. Plant and Soil, 2010, 332(1/2): 177−192.
    [37]
    钟南, 罗锡文, 秦琴. 基于微分L系统理论的植物根系生长模拟的算法 [J]. 系统仿真学报, 2006, 18(S2):138−139, 143.

    ZHONG N, LUO X W, QIN Q. Simulation arithmetic of root systems growth with differential L-systems [J]. Journal of System Simulation, 2006, 18(S2): 138−139, 143.(in Chinese)
    [38]
    彭英, 张素兰. 基于L系统的水稻根系建模与可视化 [J]. 计算机系统应用, 2020, 29(6):22−28.

    PENG Y, ZHANG S L. L-system-based modeling and visualization of rice root system [J]. Computer Systems & Applications, 2020, 29(6): 22−28.(in Chinese)
    [39]
    刘慧, 汤亮, 张文宇, 等. 基于模型的可视化水稻生长系统的构建与实现 [J]. 农业工程学报, 2009, 25(9):148−154, 362. doi: 10.3969/j.issn.1002-6819.2009.09.027

    LIU H, TANG L, ZHANG W Y, et al. Construction and implementation of model-based visual rice growth system [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(9): 148−154, 362.(in Chinese) doi: 10.3969/j.issn.1002-6819.2009.09.027
    [40]
    初广丽, 张伟, 王延杰, 等. 基于机器视觉的水果采摘机器人目标识别方法 [J]. 中国农机化学报, 2018, 39(2):83−88.

    CHU G L, ZHANG W, WANG Y J, et al. A method of fruit picking robot target identification based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(2): 83−88.(in Chinese)
    [41]
    徐超, 李乔. 基于计算机视觉的三维重建技术综述 [J]. 数字技术与应用, 2017(1):54−56.

    XU C, LI Q. 3D reconstruction technology based on computer vision: A Review [J]. Digital Technology and Application, 2017(1): 54−56.(in Chinese)
    [42]
    LOOMIS J J, LIU X W, DING Z H, et al. Visualization of plant growth[C]//Proceedings of Visualization '97 (Cat. No. 97CB36155). October 24-24, 1997, Phoenix, AZ, USA. IEEE, 1997: 475-478.
    [43]
    TERAMOTO S, UGA Y. A deep learning-based phenotypic analysis of rice root distribution from field images [J]. Plant Phenomics (Washington, D C), 2020, 2020: 3194308.
    [44]
    吴丹, 叶军立, 王康, 等. 基于轮廓投影的盆栽水稻三维重建方法研究 [J]. 中国农业科技导报, 2020, 22(9):87−95.

    WU D, YE J L, WANG K, et al. Three-dimension reconstruction method based on silhouette for pot rice [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 87−95.(in Chinese)
    [45]
    SCHULZ H, POSTMA J A, VAN DUSSCHOTEN D, et al. Plant root system analysis from MRI images[M]//Communications in Computer and Information Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 411-425.
    [46]
    VAN DUSSCHOTEN D, METZNER R, KOCHS J, et al. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging [J]. Plant Physiology, 2016, 170(3): 1176−1188. doi: 10.1104/pp.15.01388
    [47]
    AHMED M A, ZAREBANADKOUKI M, KAESTNER A, et al. Measurements of water uptake of maize roots: The key function of lateral roots [J]. Plant and Soil, 2016, 398(1/2): 59−77.
    [48]
    刘秀位, 谷慧杰, 韩洁, 等. 基于探地雷达和电容法的作物根系原位无损测量技术研究进展 [J]. 农业工程学报, 2020, 36(20):226−237. doi: 10.11975/j.issn.1002-6819.2020.20.027

    LIU X W, GU H J, HAN J, et al. Research progress of ground penetrating radar and electrical capacitance for in situ non-destructive measurement of crop roots [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 226−237.(in Chinese) doi: 10.11975/j.issn.1002-6819.2020.20.027
    [49]
    王传宇, 赵明, 阎建河, 等. 基于双目立体视觉技术的玉米叶片三维重建 [J]. 农业工程学报, 2010, 26(4):198−202. doi: 10.3969/j.issn.1002-6819.2010.04.033

    WANG C Y, ZHAO M, YAN J H, et al. Three-dimensional reconstruction of maize leaves based on binocular stereovision system [J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(4): 198−202.(in Chinese) doi: 10.3969/j.issn.1002-6819.2010.04.033
    [50]
    殷悦, 张慧春, 郑加强. 基于双目立体视觉的植物三维重建系统 [J]. 中国农机化学报, 2021, 42(3):129−135.

    YIN Y, ZHANG H C, ZHENG J Q. Three dimensional reconstruction system of plant based on binocular stereo vision [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 129−135.(in Chinese)
    [51]
    SOMMA F, HOPMANS J W, CLAUSNITZER V. Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake [J]. Plant and Soil, 1998, 202(2): 281−293. doi: 10.1023/A:1004378602378
    [52]
    ZAPPALA S, MAIRHOFER S, TRACY S, et al. Quantifying the effect of soil moisture content on segmenting root system architecture in X-ray computed tomography images [J]. Plant and Soil, 2013, 370(1/2): 35−45.
    [53]
    DUNBABIN V M, POSTMA J A, SCHNEPF A, et al. Modelling root-soil interactions using three-dimensional models of root growth, architecture and function [J]. Plant and Soil, 2013, 372(1/2): 93−124.
    [54]
    张玉, 秦华东, 黄敏, 等. 水稻根系空间分布特性的数学模拟及应用 [J]. 华南农业大学学报, 2013, 34(3):304−308. doi: 10.7671/j.issn.1001-411X.2013.03.005

    ZHANG Y, QIN H D, HUANG M, et al. Mathematical simulation of rice root spatial distribution and its application [J]. Journal of South China Agricultural University, 2013, 34(3): 304−308.(in Chinese) doi: 10.7671/j.issn.1001-411X.2013.03.005
    [55]
    刘永霞, 岳延滨, 刘岩, 等. 不同品种和氮肥条件下水稻根系主要几何参数动态量化 [J]. 中国农业科学, 2010, 43(9):1782−1790. doi: 10.3864/j.issn.0578-1752.2010.09.003

    LIU Y X, YUE Y B, LIU Y, et al. Quantitative research of dynamic models of the main geometric parameters of rice root system of different varieties under different nitrogen conditions [J]. Scientia Agricultura Sinica, 2010, 43(9): 1782−1790.(in Chinese) doi: 10.3864/j.issn.0578-1752.2010.09.003
    [56]
    李娟, 章明清, 林琼, 等. 水稻根系氮磷钾吸收特性及其模拟模型研究 [J]. 土壤通报, 2011, 42(1):117−122.

    LI J, ZHANG M Q, LIN Q, et al. Studies on N, P and K absorption characteristics of rice root system and its simulation model [J]. Chinese Journal of Soil Science, 2011, 42(1): 117−122.(in Chinese)
    [57]
    LI T, ANGELES O, MARCAIDA M III, et al. From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments [J]. Agricultural and Forest Meteorology, 2017, 237/238: 246−256. doi: 10.1016/j.agrformet.2017.02.025
    [58]
    蒋艳娜, 肖伯祥, 郭新宇, 等. 植物建模与动画合成研究 [J]. 系统仿真学报, 2015, 27(4):881−892.

    JIANG Y N, XIAO B X, GUO X Y, et al. Study in plant modeling and animation [J]. Journal of System Simulation, 2015, 27(4): 881−892.(in Chinese)
    [59]
    贾全全, 杨晓杰. 根系分形维数及其研究进展 [J]. 安徽农业科学, 2011, 39(2):652−653, 656. doi: 10.3969/j.issn.0517-6611.2011.02.009

    JIA Q Q, YANG X J. Fractal dimension and it's study extension to root systems [J]. Journal of Anhui Agricultural Sciences, 2011, 39(2): 652−653, 656.(in Chinese) doi: 10.3969/j.issn.0517-6611.2011.02.009
    [60]
    CLARK R T, MACCURDY R B, JUNG J K, et al. Three-dimensional root phenotyping with a novel imaging and software platform [J]. Plant Physiology, 2011, 156(2): 455−465. doi: 10.1104/pp.110.169102
    [61]
    ADELEKE E, MILLAS R, MCNEAL W, et al. Assessing root system architecture of wheat seedlings using A high-throughput root phenotyping system [J]. bioRxiv, 2019. doi: 10.1101/677955
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (1231) PDF downloads(90) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return