Citation: | YANG H Q, HE S, ZHANG J B. Changes on Organic Acids in Chinese Fir Seedlings under Simulated Al-stress [J]. Fujian Journal of Agricultural Sciences,2021,36(8):942−947 doi: 10.19303/j.issn.1008-0384.2021.08.011 |
[1] |
夏丽丹, 于姣妲, 邓玲玲, 等. 杉木人工林地力衰退研究进展 [J]. 世界林业研究, 2018, 31(2):37−42.
XIA L D, YU J D, DENG L L, et al. Researches on soil decline of Chinese fir plantation [J]. World Forestry Research, 2018, 31(2): 37−42.(in Chinese)
|
[2] |
任继鹏, 张逸, 钱诚, 等. 南方酸性森林土壤中铝的形态分布与活化机理 [J]. 环境化学, 2011, 30(6):1131−1135.
REN J P, ZHANG Y, QIAN C, et al. Fraction distribution and release mechanism of aluminum in acidic forest soils of southern China [J]. Environmental Chemistry, 2011, 30(6): 1131−1135.(in Chinese)
|
[3] |
SIECIŃSKA J, NOSALEWICZ A. Aluminium toxicity to plants as influenced by the properties of the root growth environment affected by other co-stressors: A Review [J]. Reviews of Environmental Contamination and Toxicology, 2017, 243: 1−26. doi: 10.1007/398_2016_15
|
[4] |
RIAZ M, YAN L, WU X W, et al. Boron increases root elongation by reducing aluminum induced disorganized distribution of HG epitopes and alterations in subcellular cell wall structure of trifoliate orange roots [J]. Ecotoxicology and Environmental Safety, 2018, 165: 202−210. doi: 10.1016/j.ecoenv.2018.09.004
|
[5] |
滕建晒, 陈健, 彭亮, 等. 水杨酸调控内源H2S缓解黑大豆铝胁迫的作用机理研究 [J]. 西北植物学报, 2019, 39(1):121−130.
TENG J S, CHEN J, PENG L, et al. Mechanism of salicylic acid regulating endogenous H2S alleviating aluminum stress in the root of black soybean [J]. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(1): 121−130.(in Chinese)
|
[6] |
闫磊. 硼对柑橘枳砧根系铝毒缓解效应及机理研究[D]. 武汉: 华中农业大学, 2020.
YAN L. Ameliorative role and mechanism of boron on aluminum toxicity in trifoliate orange roots[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese).
|
[7] |
梅映学. 碱蓬内生菌高Y1-1对镉和/或铝胁迫下水稻幼苗内源激素及有机酸含量的影响[D]. 沈阳: 沈阳师范大学, 2017.
MEI Y X. Effect of endophyte Gao Y1-1 infection on endogenous hormones and organic acids of rice seedlings under Cd and/or Al stress[D]. Shenyang: Shenyang Normal University, 2017. (in Chinese).
|
[8] |
YANG J L, FAN W, ZHENG S J. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots [J]. Journal of Zhejiang University-Science B, 2019, 20(6): 513−527. doi: 10.1631/jzus.B1900188
|
[9] |
MA J F, RYAN P R, DELHAIZE E. Aluminium tolerance in plants and the complexing role of organic acids [J]. Trends in Plant Science, 2001, 6(6): 273−278. doi: 10.1016/S1360-1385(01)01961-6
|
[10] |
RANGEL A F, RAO I M, BRAUN H P, et al. Aluminum resistance in common bean (Phaseolus vulgaris) involves induction and maintenance of citrate exudation from root apices [J]. Physiologia Plantarum, 2010, 138(2): 176−190. doi: 10.1111/j.1399-3054.2009.01303.x
|
[11] |
庞叔薇, 康德梦, 王玉保, 等. 化学浸提法研究土壤中活性铝的溶出及形态分布 [J]. 环境化学, 1986, 5(3):68−76.
PANG S W, KANG D M, WANG Y B, et al. Studies on the leaching of active aluminum from soil and the distribution of aluminum species by chemical extraction [J]. Environmental Chemistry, 1986, 5(3): 68−76.(in Chinese)
|
[12] |
孙宝利, 赤杰, 范中南, 等. 土壤及植物复合体系中有机酸的测定 [J]. 环境科学与技术, 2010, 33(9):130−134.
SUN B L, CHI J, FAN Z N, et al. Determination of organic acids from integrated system of soil and plant [J]. Environmental Science & Technology, 2010, 33(9): 130−134.(in Chinese)
|
[13] |
戴勤. 铝诱导不同耐铝型速生桉无性系有机酸分泌及其代谢调控[D]. 南宁: 广西大学, 2014.
DAI Q. The correspond regulation on Al-induced exudation and metabolism of organic acids of Al-resistance of Fast-growing in different Aluminum-resistant types of Eucalyptus Clones[D]. Nanning: Guangxi University, 2014. (in Chinese).
|
[14] |
刘玉民. 酸铝环境马尾松根系分泌物特性及其缓解铝毒的根际效应[D]. 重庆: 西南大学, 2018.
LIU Y M. The characteristics and rhizosphere effects in alleviating Al-toxicity of Pinus massoniana root exudation in acid-aluminum environment[D]. Chongqing: Southwest University, 2018. (in Chinese).
|
[15] |
汪建飞, 沈其荣. 有机酸代谢在植物适应养分和铝毒胁迫中的作用 [J]. 应用生态学报, 2006, 17(11):2210−2216. doi: 10.3321/j.issn:1001-9332.2006.11.041
WANG J F, SHEN Q R. Roles of organic acid metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress [J]. Chinese Journal of Applied Ecology, 2006, 17(11): 2210−2216.(in Chinese) doi: 10.3321/j.issn:1001-9332.2006.11.041
|
[16] |
宋松泉. 植物线粒体的物质运输 [J]. 长沙水电师院(自然科学学报), 1988, 3(4):95−102.
SONG S Q. Material transport in plant mitochondria [J]. Journal of Changsha Normal University of Water Resources and Electric Power(Natural Science Edition), 1988, 3(4): 95−102.(in Chinese)
|
[17] |
娄成后, 张蜀秋. 高等植物生长发育中同化物的转移 [J]. 科学通报, 2011, 56(30):2446−2460. doi: 10.1360/csb2011-56-30-2446
LOU C H, ZHANG S Q. Transfer of assimilates during growth and development of higher plants [J]. Chinese Science Bulletin, 2011, 56(30): 2446−2460.(in Chinese) doi: 10.1360/csb2011-56-30-2446
|
[18] |
MA J F. Role of organic acids in detoxification of aluminum in higher plants [J]. Plant and Cell Physiology, 2000, 41(4): 383−390. doi: 10.1093/pcp/41.4.383
|
[19] |
马士成. 铝对茶树氟吸收、累积、分布特性的影响及其机理研究[D]. 杭州: 浙江大学, 2012.
MA S C. Effects of aluminum on uptake, distribution and accumulation of fluorine in tea plants and its mechanism[D]. Hangzhou: Zhejiang University, 2012. (in Chinese).
|
[20] |
钱莲文, 李清彪, 孙境蔚, 等. 铝胁迫下常绿杨根系有机酸和氨基酸的分泌 [J]. 厦门大学学报(自然科学版), 2018, 57(2):221−227.
QIAN L W, LI Q B, SUN J W, et al. Root secretion of organic acids and amino acids of evergreen poplar under aluminum stress [J]. Journal of Xiamen University (Natural Science Edition), 2018, 57(2): 221−227.(in Chinese)
|
[21] |
李东芹. 铝通过有机酸途径缓解氟对茶树的影响[D]. 南京: 南京农业大学, 2017.
LI D Q. Research on aluminum relieves the effect of fluorine by organic acid in tea plant[Camellia sinensis(L.) kuntze][D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese).
|
[22] |
田聪, 张烁, 粟畅, 等. 铝胁迫下大豆根系有机酸积累的特性 [J]. 大豆科学, 2017, 36(2):256−261.
TIAN C, ZHANG S, SU C, et al. Effects of aluminum (Al) on organic acid accumulation in soybean roots [J]. Soybean Science, 2017, 36(2): 256−261.(in Chinese)
|