Citation: | ZHANG S F, CHEN S C, LIANG W F, et al. Functional Bacillus Species in Camellia Seed Shell Compost [J]. Fujian Journal of Agricultural Sciences,2021,36(7):843−854 doi: 10.19303/j.issn.1008-0384.2021.07.014 |
[1] |
HU J B, SHI Y, LIU Y, et al. Anatomical structure of Camellia oleifera shell [J]. Protoplasma, 2018, 255(6): 1777−1784. doi: 10.1007/s00709-018-1271-8
|
[2] |
覃佐东, 谢吉勇, 黄生辉, 等. 油茶壳综合利用研究进展 [J]. 生物加工过程, 2016, 14(5):74−78. doi: 10.3969/j.issn.1672-3678.2016.05.014
QIN Z D, XIE J Y, HUANG S H, et al. Progress in utilization of camellia shells [J]. Chinese Journal of Bioprocess Engineering, 2016, 14(5): 74−78.(in Chinese) doi: 10.3969/j.issn.1672-3678.2016.05.014
|
[3] |
SHRESTHA K, SHRESTHA P, WALSH K B, et al. Microbial enhancement of compost extracts based on cattle rumen content compost - characterisation of a system [J]. Bioresource Technology, 2011, 102(17): 8027−8034. doi: 10.1016/j.biortech.2011.06.076
|
[4] |
SONG C, ZHANG Y, XIA X, et al. Effect of inoculation with a microbial consortium that degrades organic acids on the composting efficiency of food waste [J]. Microbial Biotechnology, 2018, 11(6): 1124−1136. doi: 10.1111/1751-7915.13294
|
[5] |
FANG Y, JIA X B, CHEN L J, et al. Effect of thermotolerant bacterial inoculation on the microbial community during sludge composting [J]. Canadian Journal of Microbiology, 2019, 65(10): 750−761. doi: 10.1139/cjm-2019-0107
|
[6] |
THATOI H, BEHERA B C, MISHRA R R, et al. Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: A review [J]. Annals of Microbiology, 2013, 63(1): 1−19. doi: 10.1007/s13213-012-0442-7
|
[7] |
胡亚杰, 韦建玉, 卢健, 等. 枯草芽孢杆菌在农作物生产上的应用研究进展 [J]. 作物研究, 2019, 33(2):167−172.
HU Y J, WEI J Y, LU J, et al. Research prog ress of Bacillus subtilis application in crops production [J]. Crop Research, 2019, 33(2): 167−172.(in Chinese)
|
[8] |
MAYENDE L, WILHELMI B, PLETSCHKE B. Cellulases (CMCases) and polyphenol oxidases from thermophilic Bacillus spp. isolated from compost [J]. Soil Biology and Biochemistry, 2006, 38(9): 2963−2966. doi: 10.1016/j.soilbio.2006.03.019
|
[9] |
JOSÉ V C. Inoculating composted pine bark with beneficial organisms to make a disease suppressive compost for container production in mexican forest nurseries [J]. Plants Journal, 2004, 2(5): 181−185.
|
[10] |
KRAUSE M S, DE CEUSTER T J J, TIQUIA S M, et al. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish [J]. Phytopathology, 2003, 93(10): 1292−1300. doi: 10.1094/PHYTO.2003.93.10.1292
|
[11] |
付冰妍, 孙向阳, 余克非, 等. 芽孢杆菌B01固态发酵及其对园林废弃物堆肥的影响 [J]. 环境科学研究, 2020(2):450−457.
FU B Y, SUN X Y, YU K F, et al. Solid state fermentation of Bacillus B01 and its effect on green waste composting [J]. Research of Environmental Sciences, 2020(2): 450−457.(in Chinese)
|
[12] |
余培斌, 杜晶, 陈建新. 高温好氧堆肥过程中芽孢杆菌的筛选、鉴定及应用 [J]. 食品与发酵工业, 2020, 46(12):199−205, 212.
YU P B, DU J, CHEN J X. Study on screening and identification of Bacillus in the process of high-temperature aerobic composting and its application [J]. Food and Fermentation Industries, 2020, 46(12): 199−205, 212.(in Chinese)
|
[13] |
ZHANG J P, YING Y, LI X B, et al. Physical and chemical properties of Camellia oleifera shell composts with different additives and its maturity evaluation system [J]. Environmental Science and Pollution Research, 2020, 27(28): 35294−35302. doi: 10.1007/s11356-020-09861-3
|
[14] |
詹孝慈, 罗在柒, 武忠亮, 等. 不同氮源及微生物菌剂能提高油茶壳堆肥效果 [J]. 分子植物育种, 2019, 17(12):4153−4160.
ZHAN X C, LUO Z Q, WU Z L, et al. Different nitrogen sources and microbial inoculants could improve the composting of Camellia oleifera shell [J]. Fenzi Zhiwu Yuzhong (Molecular Plant Breeding), 2019, 17(12): 4153−4160.(in Chinese)
|
[15] |
ZHANG J P, YING Y, YAO X H. Effects of turning frequency on the nutrients of Camellia oleifera shell co-compost with goat dung and evaluation of co-compost maturity [J]. PLoS One, 2019, 14(9): e0222841. doi: 10.1371/journal.pone.0222841
|
[16] |
秦楠, 栗东芳, 杨瑞馥. 高通量测序技术及其在微生物学研究中的应用 [J]. 微生物学报, 2011, 51(4):445−457.
QIN N, LI D F, YANG R F. Next-generation sequencing technologies and the application in microbiology-A review [J]. Acta Microbiologica Sinica, 2011, 51(4): 445−457.(in Chinese)
|
[17] |
葛慈斌, 蓝江林, 刘波, 等. 解淀粉芽胞杆菌FJAT-8754产纤维素酶和淀粉酶发酵动力学模型的构建 [J]. 福建农业学报, 2019, 34(6):697−704.
GE C B, LAN J L, LIU B, et al. Kinetics of cellulase and amylase-producing fermentation of Bacillus amylolique faciens FJAT-8754 [J]. Fujian Journal of Agricultural Sciences, 2019, 34(6): 697−704.(in Chinese)
|
[18] |
赵国群, 牛梦天, 卢士康, 等. 梨渣固态发酵培养多粘类芽孢杆菌的工艺 [J]. 农业工程学报, 2016, 32(7):303−308.
ZHAO G Q, NIU M T, LU S K, et al. Cultivation of Paenibacillus polymyxa by solid-state fermentation of pear residues [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(7): 303−308.(in Chinese)
|
[19] |
胡瑞萍, 丁贤, 李来好, 等. 响应面法优化枯草芽孢杆菌NHS1产芽孢发酵培养 [J]. 生态学杂志, 2018, 37(2):605−612.
HU R P, DING X, LI L H, et al. Optimization of fermentation medium composition by response surface methodology for the spore production of Bacillus subtilis [J]. Chinese Journal of Ecology, 2018, 37(2): 605−612.(in Chinese)
|
[20] |
董佩佩, 汪祥燕, 刘元香, 等. 一株凝结芽孢杆菌(Bacillus coagulans)发酵培养基的优化 [J]. 中国酿造, 2018, 37(4):28−32. doi: 10.11882/j.issn.0254-5071.2018.04.006
DONG P P, WANG X Y, LIU Y X, et al. Optimization of fermentation medium of Bacillus coagulans [J]. China Brewing, 2018, 37(4): 28−32.(in Chinese) doi: 10.11882/j.issn.0254-5071.2018.04.006
|
[21] |
MATHAKIYA R A, ROY A, NANDASANA K N, et al. Evaluation of a rapid molecular method for detection of Listeria monocytogenes directly from broth culture[J]. Veterinary World, 2009, 2(5): 177-178.
|
[22] |
何深宏, 程方俊, 罗干, 等. 解淀粉芽孢杆菌高产纤维素酶菌株的筛选与鉴定 [J]. 福建农业学报, 2020, 35(7):781−787.
HE S H, CHENG F J, LUO G, et al. Screening and identifying cellulase-producing Bacillus amyloliquefaciens [J]. Fujian Journal of Agricultural Sciences, 2020, 35(7): 781−787.(in Chinese)
|
[23] |
YU D, TONG W, CHEN Y, et al. Improvement of bacterial genomic DNA extraction in clinical specimens [J]. Chinese Journal of Microecology, 2007, 6(19): 519−520.
|
[24] |
王佳楠, 石妍云, 郑力燕, 等. 石油降解菌的分离鉴定及4株芽胞杆菌种间效应 [J]. 环境科学, 2015, 36(6):2245−2251.
WANG J N, SHI Y Y, ZHENG L Y, et al. Isolation and identification of petroleum degradation bacteria and interspecific interactions among four Bacillus strains [J]. Environmental Science, 2015, 36(6): 2245−2251.(in Chinese)
|
[25] |
DUNLAP C A, SCHISLER D A, PERRY E B, et al. Bacillus swezeyi sp. nov. and Bacillus haynesii sp. nov., isolated from desert soil [J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(8): 2720−2725. doi: 10.1099/ijsem.0.002007
|
[26] |
ADAWAREN E O, DU PLESSIS M, SULEMAN E, et al. The complete mitochondrial genome of Gyps coprotheres (Aves, Accipitridae, Accipitriformes): Phylogenetic analysis of mitogenome among raptors [J]. PeerJ, 2020, 8: e10034. doi: 10.7717/peerj.10034
|
[27] |
QIAN Y, SUN Y, ZHONG L, et al. The GATA-Type Transcriptional Factor Are1 Modulates the Expression of Extracellular Proteases and Cellulases in Trichoderma reesei [J]. International Journal of Molecular Sciences, 2019, 20(17): 4100. doi: 10.3390/ijms20174100
|
[28] |
ELAMARY R, SALEM W M. Optimizing and purifying extracellular amylase from soil bacteria to inhibit clinical biofilm-forming bacteria [J]. PeerJ, 2020, 8: e10288. doi: 10.7717/peerj.10288
|
[29] |
HAJIABADI S, MASHREGHI M, REZA BAHRAMI A, et al. Isolation and molecular identification of cellulolytic bacteria from Dig Rostam hot spring and study of their cellulase activity [J]. BIOCELL, 2020, 44(1): 63−71. doi: 10.32604/biocell.2020.08171
|
[30] |
WU C L, LIU D, YANG X H, et al. Improving production of protease from Pseudoalteromonas sp. CSN423 by random mutagenesis [J]. Marine Biotechnology (New York, N Y), 2016, 18(5): 610−618. doi: 10.1007/s10126-016-9721-9
|
[31] |
曹丹, 彭浩, 兰阿峰, 等. 一株α-淀粉酶产生菌的分离、鉴定及产酶条件研究 [J]. 食品研究与开发, 2020, 41(6):169−174.
CAO D, PENG H, LAN A F, et al. Isolation, identification and enzyme production conditions of an α-amylase producing strain [J]. Food Research And Developmen, 2020, 41(6): 169−174.(in Chinese)
|
[32] |
冯红梅, 秦永胜, 李筱帆, 等. 高温纤维素降解菌群筛选及产酶特性 [J]. 环境科学, 2016, 37(4):1546−1552.
FENG H M, QIN Y S, LI X F, et al. Screening and enzyme production characteristics of thermophilic cellulase-producing strains [J]. Environmental Science, 2016, 37(4): 1546−1552.(in Chinese)
|
[33] |
附录B(规范性附录)总腐植酸含量的测定方法[J]. 腐植酸, 2016(2): 47−48.
Appendix B (normative appendix) determination method of total humic acid content[J]. Humic acid, 2016 (2): 47 − 48. (in Chinese).
|
[34] |
JAIN S, SALUJA B, GUPTA A, et al. Validation of arsenic resistance in Bacillus cereus strain AG27 by comparative protein modeling of arsC gene product [J]. The Protein Journal, 2011, 30(2): 91−101. doi: 10.1007/s10930-011-9305-5
|
[35] |
BHADRA B, RAGHUKUMAR C, PINDI P K, et al. Brevibacterium oceani sp. nov., isolated from deep-sea sediment of the Chagos Trench, Indian Ocean [J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(1): 57−60. doi: 10.1099/ijs.0.64869-0
|
[36] |
JEBELI M A, MALEKI A, AMOOZEGAR M A, et al. Bacillus flexus strain As-12, a new arsenic transformer bacterium isolated from contaminated water resources [J]. Chemosphere, 2017, 169: 636−641. doi: 10.1016/j.chemosphere.2016.11.129
|
[37] |
LIU D, LI M, XI B, et al. Metaproteomics reveals major microbial players and their biodegradation functions in a large‐scale aerobic composting plant [J]. Microbial Biotechnology, 2015, 8(6): 950−960. doi: 10.1111/1751-7915.12290
|
[38] |
聂文翰, 戚志萍, 冯海玮, 等. 复合菌剂秸秆堆肥对土壤碳氮含量和酶活性的影响 [J]. 环境科学, 2017, 38(2):783−791.
NIE W H, QI Z P, FENG H W, et al. Steaw composts with composite inoculants and theie effects on soil caebon and niteogen contents and enzyme activity [J]. Environmental Science, 2017, 38(2): 783−791.(in Chinese)
|
[39] |
WANG M, MIAO J, WANG X, et al. Genomic and transcriptome analyses of a thermophilic bacterium Geobacillus stearothermophilus B5 isolated from compost reveal its enzymatic basis for lignocellulose degradation [J]. Microorganisms, 2020, 8(9): 1−18.
|
[40] |
王腾浩, 潘岳龙, 沈炜, 等. 蜡样芽孢杆菌与粪肠球菌协同发酵豆粕工艺条件优化 [J]. 饲料研究, 2020, 43(3):74−77.
WANG T H, PAN Y L, SHEN W, et al. The optimization of fermentation conditions of soybean meal by using Bacillus Cereus and Enterococcus Faecalis [J]. Feed Research, 2020, 43(3): 74−77.(in Chinese)
|
[41] |
LI Y, CHI M, GE X, et al. Identification of a novel hydrolase encoded by hy-1 from Bacillus amyloliquefaciens for bioremediation of carbendazim contaminated soil and food [J]. International journal of agricultural and biological engineering, 2019, 12(2): 218−224. doi: 10.25165/j.ijabe.20191202.4190
|
[42] |
阚洪媛, 杨世鑫, 孙梁伦, 等. 一株耐铅、锌、铬菌株的分离鉴定及其吸附能力 [J]. 微生物学通报, 2020(12):3974−3986.
KAN H Y, YANG S X, SUN L L, et al. Isolation, identification and adsorption capacity of a strain resistant to lead, zinc and chromium [J]. Microbiology China, 2020(12): 3974−3986.(in Chinese)
|
[43] |
潘建华, 刘瑞霞. 蜡状芽孢杆菌Bacillus cereus吸附铅的研究 [J]. 环境科学, 2004, 25(2):166−169. doi: 10.3321/j.issn:0250-3301.2004.02.034
PAN J H, LIU R X. Biosorption of Pb 2+ by Bacillus cereus Biomass [J]. Environmental Science, 2004, 25(2): 166−169.(in Chinese) doi: 10.3321/j.issn:0250-3301.2004.02.034
|
[44] |
呼庆, 齐鸿雁, 窦敏娜, 等. 强抗镉蜡状芽孢杆菌的分离鉴定及其抗性机理 [J]. 环境科学, 2007, 28(2):427−430. doi: 10.3321/j.issn:0250-3301.2007.02.038
HU Q, QI H Y, DOU M N, et al. Isolation, molecular characterization and resistance mechanism study on a cadmium hyperresistant Bacillus cereus [J]. Environmental Science, 2007, 28(2): 427−430.(in Chinese) doi: 10.3321/j.issn:0250-3301.2007.02.038
|
[45] |
段海明. 两株蜡状芽孢杆菌对毒死蜱的降解动力学研究 [J]. 中国生态农业学报, 2013, 21(2):207−211.
DUAN H M. Kinetics of chlorpyrifos degradation by Bacillus cereus strains [J]. Chinese Journal of Eco-Agriculture, 2013, 21(2): 207−211.(in Chinese)
|
[46] |
LU M, ZHANG Z Z. Phytoremediation of soil co-contaminated with heavy metals and deca-BDE by co-planting of Sedum alfredii with tall fescue associated with Bacillus cereus JP12 [J]. Plant and Soil, 2014, 382(1/2): 89−102.
|
[47] |
NAYAK A K, PANDA S S, BASU A, et al. Enhancement of toxic Cr (VI), Fe, and other heavy metals phytoremediation by the synergistic combination of native Bacillus cereus strain and Vetiveria zizanioides L [J]. International Journal of Phytoremediation, 2018, 20(7): 682−691. doi: 10.1080/15226514.2017.1413332
|
[48] |
XIONG Y W, LI X W, WANG T T, et al. Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress [J]. Ecotoxicology and Environmental Safety, 2020, 194: 110374. doi: 10.1016/j.ecoenv.2020.110374
|
[49] |
KUMAR A, PRIYADARSHINEE R, SINGHA S, et al. Biodegradation of alkali lignin by Bacillus flexus RMWW II: Analyzing performance for abatement of rice mill wastewater [J]. Water Science and Technology, 2019, 80(9): 1623−1632. doi: 10.2166/wst.2020.005
|
[50] |
MOHANTY S S, KUMAR A. Response surface methodology mediated optimization of Indanthrene Blue RS by a novel isolated bacterial strain Bacillus flexus TS8 [J]. Water Environment Research, 2020, 92(4): 569−578. doi: 10.1002/wer.1246
|
[51] |
REDA F M, HASSANEIN W A, MOABED S, et al. Potential exploitation of Bacillus flexus biofilm against the cowpea weevil, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) [J]. Egyptian Journal of Biological Pest Control, 2020, 30(1): 1−7. doi: 10.1186/s41938-020-0205-x
|
[52] |
NAM J H, BAE W, LEE D H. Oceanobacillus caeni sp. nov., isolated from a Bacillus-dominated wastewater treatment system in Korea [J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58: 1109−1113. doi: 10.1099/ijs.0.65335-0
|