• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 36 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
ZHU Z Y, LIAN X Y, LIN F L, et al. Effects of Bio-organic Fertilizer on Physicochemical Properties and Microflora of Banana Field Infected by Fusarium Wilt Disease [J]. Fujian Journal of Agricultural Sciences,2021,36(7):806−816 doi: 10.19303/j.issn.1008-0384.2021.07.010
Citation: ZHU Z Y, LIAN X Y, LIN F L, et al. Effects of Bio-organic Fertilizer on Physicochemical Properties and Microflora of Banana Field Infected by Fusarium Wilt Disease [J]. Fujian Journal of Agricultural Sciences,2021,36(7):806−816 doi: 10.19303/j.issn.1008-0384.2021.07.010

Effects of Bio-organic Fertilizer on Physicochemical Properties and Microflora of Banana Field Infected by Fusarium Wilt Disease

doi: 10.19303/j.issn.1008-0384.2021.07.010
  • Received Date: 2020-11-19
  • Rev Recd Date: 2021-03-16
  • Available Online: 2021-07-13
  • Publish Date: 2021-07-28
  •   Objective   Effects of a bio-organic fertilizer on physicochemical properties and microbial community in rhizosphere soil of a banana field infected by Fusarium wilt disease were studied.   Methods   In a Fusarium wilt infected banana field, an random block design experiment on the application of a bio-organic fertilizer, Biofert, was conducted. Six months after banana seedlings were transplanted to the field, rhizosphere soil samples from lots with and without Biofert application were collected to determine the nutrient contents by chemical analysis and the microbial composition and diversity by high-throughput sequencing and bioinformatics analysis.   Results   Compared to control, the application of Biofert increased pH by 14.85%, the total N by 25%, and total P by 19.04%, but decreased the total Fe by 2.62% in the soil, while lowered the incidence of Fusarium wilt on the plants by 75%. In the rhizosphere soil, the Biofert-treated lots showed the relative abundance of, other than an 18.49% decrease on Proteobacteria, increases by 43.84% on Ascomycota, 90.64% on Chytridiomycota, 293% on Penicillium, 212% on Gibellulopsis, and 1193% on Talaromyces, 39.81% on fungal Chao1 index, 38.43% on ACE, and 86.85% on Shannon index.   Conclusion   Biofert application not only improved the soil quality but also significantly altered the structure and diversity of the microbial community in rhizosphere soil and contributed to the reduced incidence of banana wilt disease.
  • loading
  • [1]
    LIN Y H, LIN Y J, CHANG T D, et al. Development of a TaqMan Probe-Based Insulated Isothermal Polymerase Chain Reaction (iiPCR) Assay for Detection of Fusarium oxysporum f. sp. cubense Race 4 [J]. PLoS One, 2016, 11(7): 1−13.
    [2]
    LI X J, LI K, ZHOU D B, et al. Biological control of banana wilt disease caused by Fusarium oxyspoum f. sp. Cubense using Streptomyces sp. H4 [J]. Biological Control, 2021, 155(10): 1−9.
    [3]
    LIN Y J, LIN H K, LIN Y H. Construction of Raman spectroscopic fingerprints for the detection of Fusarium wilt of banana in Taiwan [J]. PLoS One, 2020, 15(3): 1−14.
    [4]
    WARMAN N M, AITKEN E A B. The Movement of Fusarium oxysporum f. sp. cubense (Sub-Tropical Race 4) in Susceptible Cultivars of Banana [J]. Frontiers in Plant Science, 2018, 9: 1748−1757. doi: 10.3389/fpls.2018.01748
    [5]
    李进, 张立丹, 刘芳, 等. 碱性肥料对香蕉枯萎病发生及土壤微生物群落的影响 [J]. 植物营养与肥料学报, 2016, 22(2):429−436. doi: 10.11674/zwyf.14460

    LI J, ZHANG L D, LIU F, et al. Effects of alkaline fertilizer on occurrence of banana wilt disease and soil microbial community [J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 429−436.(in Chinese) doi: 10.11674/zwyf.14460
    [6]
    王荣, 刘吉青, 周海霞, 等. 生物有机肥与保水剂对设施连作黄瓜生长和土壤肥力的影响 [J]. 河南农业科学, 2018, 47(8):45−53.

    WANG R, LIU J Q, ZHOU H X, et al. Effects of bio-organic fertilizer and water-retaining agent on cucumber growth and soil fertility under continuous cropping in greenhouse [J]. Journal of Henan Agricultural Sciences, 2018, 47(8): 45−53.(in Chinese)
    [7]
    ZHU Z Y, TIAN Z H, LI J X. A Streptomyces morookaensis strain promotes plant growth and suppresses Fusarium wilt of banana [J]. Tropical Plant Pathology, 2021, 46(2): 175−185. doi: 10.1007/s40858-020-00396-z
    [8]
    CHENG C Z, LI D, QI Q, et al. The root endophytic fungus Serendipita indica improves resistance of Banana to Fusarium oxysporum f. sp. cubense tropical race 4 [J]. European Journal of Plant Pathology, 2020, 156(1): 87−100. doi: 10.1007/s10658-019-01863-3
    [9]
    LUO G W, LI L, FRIMAN V P, et al. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis [J]. Soil Biology and Biochemistry, 2018, 124: 105−115. doi: 10.1016/j.soilbio.2018.06.002
    [10]
    CHENG H Y, ZHANG D Q, HUANG B, et al. Organic fertilizer improves soil fertility and restores the bacterial community after 1, 3-dichloropropene fumigation [J]. The Science of the Total Environment, 2020, 738(6): 1−42.
    [11]
    陶成圆. 含解淀粉芽孢杆菌NJN-6的生物有机肥防控香蕉枯萎病研究[D]. 南京: 南京农业大学, 2016.

    TAO C Y. Effect of the combination of bio-organic fertilizer with Bacillus amyloliquefaciens NJN-6 on the control of banana Fusarium wilt disease[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese)
    [12]
    TAO C Y, LI R, XIONG W, et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression [J]. Microbiome, 2020, 8(1): 137. doi: 10.1186/s40168-020-00892-z
    [13]
    剧虹伶. 辣椒-香蕉轮作联合生物有机肥减轻高发枯萎病蕉园连作障碍机制研究[D]. 海口: 海南大学, 2017.

    JU H L. Research on the mechanisms of mitigate continuous obstacle of banana orchard with serious wilt disease by combined pepper-banana rotation together with application of bio-organic fertilizer[D]. Haikou: Hainan University, 2017. (in Chinese)
    [14]
    吉福桑, 杨振, 徐亚, 等. 盐胁迫下巴西蕉叶片的转录组和蛋白质组关联分析 [J]. 分子植物育种, 2020, 18(23):7671−7678.

    JI F S, YANG Z, XU Y, et al. Association analysis on transcriptomics and proteomics of Musa paradisiaca banana leaf under salt stress [J]. Molecular Plant Breeding, 2020, 18(23): 7671−7678.(in Chinese)
    [15]
    GUO L J, YANG L Y, LIANG C C, et al. Differential Colonization Patterns of Bananas (Musa spp.) by Physiological Race 1 and Race 4 Isolates of Fusarium oxysporum f. sp. cubense [J]. Journal of Phytopathology, 2015, 163(10): 807−817. doi: 10.1111/jph.12378
    [16]
    FAN H Y, LEI Z X, DONG H H, et al. Immune responses in Brazilian banana determining the pathogenic differences between the physiological races 1 and 4 of Fusarium oxysporum f. sp. cubense [J]. Journal of Plant Pathology, 2019, 101(2): 225−234. doi: 10.1007/s42161-018-0165-0
    [17]
    刘光崧. 土壤理化分析与剖面描述[M]. 北京: 中国标准出版社, 1996: 50−81.
    [18]
    MOSTERT D, MOLINA A B, DANIELLS J, et al. The distribution and host range of the banana Fusarium wilt fungus, Fusarium oxysporum f. sp. cubense, in Asia [J]. PLoS One, 2017, 12(7): 1−10.
    [19]
    DITA M A, WAALWIJK C, BUDDENHAGEN I W, et al. A molecular diagnostic for tropical race 4 of the banana Fusarium wilt pathogen [J]. Plant Pathology, 2010, 59(2): 348−357. doi: 10.1111/j.1365-3059.2009.02221.x
    [20]
    MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies [J]. Bioinformatics, 2011, 27(21): 2957−2963. doi: 10.1093/bioinformatics/btr507
    [21]
    BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data [J]. Bioinformatics (Oxford, England), 2014, 30(15): 2114−2120. doi: 10.1093/bioinformatics/btu170
    [22]
    EDGAR R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads [J]. Nature Methods, 2013, 10(10): 996−998. doi: 10.1038/nmeth.2604
    [23]
    CHEN D, LIU X, LI C Y, et al. Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt [J]. Journal of Environmental Management, 2014, 137(1): 120−127.
    [24]
    ZUO C W, LI C Y, LI B, et al. The toxic mechanism and bioactive components of Chinese leek root exudates acting against Fusarium oxysporum f. sp. cubense tropical race 4 [J]. European Journal of Plant Pathology, 2015, 143(3): 447−460. doi: 10.1007/s10658-015-0697-5
    [25]
    CHOWDHURY S P, HARTMANN A, GAO X W, et al. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review [J]. Frontiers in Microbiology, 2015, 6(7): 780−790.
    [26]
    曹云. SQR 9微生物有机肥防治黄瓜土传枯萎病的效应与机制研究[D]. 南京: 南京农业大学, 2011.

    CAO Y. Control of Fusarium wilt disease of cucumber by application of bio-organic fertilizer and its working mechanism[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
    [27]
    KAI T, TAMAKI M. Effect of organic and chemical fertilizer application on growth, yield, and soil biochemical properties of Landrace Brassica napus L. leaf-and-stem vegetable and Landrace (norabona) [J]. Journal of Agricultural Chemistry and Environment, 2020, 9(4): 314−330. doi: 10.4236/jacen.2020.94023
    [28]
    袁听, 覃金兰, 何珊, 等. 印度梨形孢对植物生长调节剂在水稻上过量使用的缓解作用 [J]. 福建农业学报, 2020, 35(4):398−405.

    YUAN T, QIN J L, HE S, et al. Mitigating ill-effect of plant growth regulator overuse on rice plants by Piriformospora indica [J]. Fujian Journal of Agricultural Sciences, 2020, 35(4): 398−405.(in Chinese)
    [29]
    GU S H, WEI Z, SHAO Z Y, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes [J]. Nature Microbiology, 2020, 5(8): 1002−1010. doi: 10.1038/s41564-020-0719-8
    [30]
    LI C Y, ZUO C W, DENG G M, et al. Contamination of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense [J]. PLos One, 2013, 8(7): 1−11.
    [31]
    彭双, 王一明, 叶旭红, 等. 土壤环境因素对致病性尖孢镰刀菌生长的影响 [J]. 土壤, 2014, 46(5):845−850.

    PENG S, WANG Y M, YE X H, et al. Effects of Soil Habitat Factors on Growth of Fusarium oxysporum f. sp. niveum and Fusarium oxysporum f. sp. cucumerinum [J]. Soils, 2014, 46(5): 845−850.(in Chinese)
    [32]
    马国斌, 林德佩, 王叶筠, 等. 培养条件对西瓜枯萎病菌镰刀菌酸产生的影响 [J]. 植物病理学报, 1996, 26(2):92−96.

    MA G B, LIN D P, WANG Y J, et al. Effect of cultural conditions on production of fusaric acid of watermelon Fusarium wilt fungus [J]. Acta Phytopathologica Sinica, 1996, 26(2): 92−96.(in Chinese)
    [33]
    薛超. 香蕉根际土壤微生物区系特征与土传枯萎病防控研究[D]. 南京: 南京农业大学, 2015.

    XUE C. Manipulation of microbial community in banana rhizospherer to suppress Fusarium wilt of banana[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
    [34]
    柳凯, 季倩茹, 陈静, 等. 施用Streptomyces alfalfae XY25T对根肿病土壤性质及微生物群落的影响 [J]. 微生物学通报, 2020, 47(1):97−108.

    LIU K, JI Q R, CHEN J, et al. Effect of Streptomyces alfalfae XY25T on soil properties and microflora in clubroot-diseased soil [J]. Microbiology China, 2020, 47(1): 97−108.(in Chinese)
    [35]
    CHEN Z T, AO J Q, YANG W C, et al. Purification and characterization of a novel antifungal protein secreted by Penicillium chrysogenum from an Arctic sediment [J]. Applied Microbiology and Biotechnology, 2013, 97(24): 10381−10390. doi: 10.1007/s00253-013-4800-6
    [36]
    NGUVO K J, GAO X Q. Weapons hidden underneath: Bio-control agents and their potentials to activate plant induced systemic resistance in controlling crop Fusarium diseases [J]. Journal of Plant Diseases and Protection, 2019, 126(3): 177−190. doi: 10.1007/s41348-019-00222-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (648) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return