• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 36 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
LI L, LI T T, YANG K, et al. Mechanisms Involving Inhibition of Narcissus Flower Bud Differentiation by Low Temperature [J]. Fujian Journal of Agricultural Sciences,2021,36(4):412−417 doi: 10.19303/j.issn.1008-0384.2021.04.005
Citation: LI L, LI T T, YANG K, et al. Mechanisms Involving Inhibition of Narcissus Flower Bud Differentiation by Low Temperature [J]. Fujian Journal of Agricultural Sciences,2021,36(4):412−417 doi: 10.19303/j.issn.1008-0384.2021.04.005

Mechanisms Involving Inhibition of Narcissus Flower Bud Differentiation by Low Temperature

doi: 10.19303/j.issn.1008-0384.2021.04.005
  • Received Date: 2020-12-22
  • Rev Recd Date: 2021-02-03
  • Available Online: 2021-03-27
  • Publish Date: 2021-04-30
  •   Objective  Physiology and biochemistry associated with the flower bud differentiation of Narcissus tazetta var. chinensis suppressed by low temperature were studied.   Method   Three-year-old Chinese narcissus bulbs were stored under 15 ℃ or room temperature to compare the differences on the protective enzyme activity and soluble protein and carbohydrate contents in the scales.   Results  Under room temperature, the contents of superoxide anion (O2·) and hydrogen peroxide (H2O2) in the scales rose initially followed by a decline and another rise; the activity of superoxide dismutase (SOD) remained high, peroxidase (POD) low, and catalase (CAT) ascended significantly in late stage; and, during the floret primordium developmental stage, the contents of sucrose and starch in scale declined, while α-amylase and soluble sugar stayed high. In contrast to room temperature, at 15 ℃ the O2· and H2O2 in the scales increased but the SOD activity was not affected, while the POD and CAT activities in the stamen primordium significantly increased and the contents of soluble sugar, sucrose, and starch as well as the activity of α-amylase lowered at different sampling points.   Conclusion  The accumulation of carbohydrates, such as soluble sugars and starch, in narcissus scales was greatly affected by the low storage temperature at 15 ℃. It was crucial for the Chinese narcissus flower bud differentiation, particularly during the development of floret primordium.
  • loading
  • [1]
    郜爱玲, 李建安, 刘儒, 等. 高等植物花芽分化机理研究进展 [J]. 经济林研究, 2010, 28(2):131−136.

    GAO A L, LI J A, LIU R, et al. Advances in research on flower bud differentiation mechanism in higher plants [J]. Nonwood Forest Research, 2010, 28(2): 131−136.(in Chinese)
    [2]
    HIDAKA K, DAN K, IMAMURA H, et al. Crown-cooling treatment induces earlier flower bud differentiation of strawberry under high air temperatures [J]. Environmental Control in Biology, 2017, 55(1): 21−27. doi: 10.2525/ecb.55.21
    [3]
    GUO J E, LI T, SUN X , et al. Relationship between endogenous polyamines and floral bud differentiation in Chrysanthemum morifolium under short-day conditions [J]. Korean Journal of Horticultural Science & Technology, 2015, 33(1): 31−38.
    [4]
    万春雁, 糜林, 李金凤, 等. 苗期不同水分处理对草莓花芽分化及果实早熟化的影响 [J]. 果树学报, 2016, 33(12):1523−1531.

    WAN C Y, MI L, LI J F, et al. Effect of different water treatments at seedling stage on flower bud differentiation and prematurity of strawberry [J]. Journal of Fruit Science, 2016, 33(12): 1523−1531.(in Chinese)
    [5]
    申艳红, 姜涛, 赵湾湾, 等. 乙烯处理水仙催多花技术和机理的研究 [J]. 农业生物技术学报, 2019, 27(6):1003−1015.

    SHEN Y H, JIANG T, ZHAO W W, et al. Study on technology and mechanism of ethylene treatment promotes the formation of more flowers of Narcissus tazetta var. chinensis [J]. Journal of Agricultural Biotechnology, 2019, 27(6): 1003−1015.(in Chinese)
    [6]
    韩佩汝, 张正伟, 郑静, 等. 低温对草莓花芽分化的影响 [J]. 中国农业大学学报, 2019, 24(1):30−39.

    HAN P R, ZHANG Z W, ZHENG J, et al. Effects of low temperature on flower bud differentiation in strawberry [J]. Journal of China Agricultural University, 2019, 24(1): 30−39.(in Chinese)
    [7]
    HENDRIKA A C F L, HARM N, NADAL B J, et al. Molecular regulation of temperature-dependent floral induction in Tulipa gesneriana [J]. Plant physiology, 2017, 173(3): 1904−1919. doi: 10.1104/pp.16.01758
    [8]
    姚婷婷. 贮藏温度对水仙生长发育相关形态、生理与代谢的影响[D]. 福州: 福建农林大学, 2018.

    YAO T T. Effect of storage temperature on morphology, physiology and metabolism of Narcissus tazetta var. chinensis growth and development[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese)
    [9]
    李志娟, 付宝春, 王云山, 等. 萱草花芽分化过程中外部形态及营养物质特征 [J]. 分子植物育种, 2019, 17(18):6135−6141.

    LI Z J, FU B C, WANG Y S, et al. External morphology characteristics and nutrient changes involved in Hemerocallis flower bud differentiation [J]. Molecular Plant Breeding, 2019, 17(18): 6135−6141.(in Chinese)
    [10]
    汪晓谦, 张延龙, 牛立新, 等. 郁金香花芽分化过程中鳞茎碳水化合物和蛋白质含量的变化 [J]. 植物生理学报, 2011, 47(4):379−384.

    WANG X Q, ZHANG Y L, NIU L X, et al. Changes of carbohydrate and protein contents in bulbs of Tulipa gesneriana L. during flower bud differentiation [J]. Plant Physiology Communications, 2011, 47(4): 379−384.(in Chinese)
    [11]
    张莹婷, 杨秀莲, 何岭, 等. 2种石蒜花芽分化与碳水化合物、抗氧化物酶及内源激素变化的关系 [J]. 安徽农业大学学报, 2019, 46(2):342−349.

    ZHANG Y T, YANG X L, HE L, et al. Relationships between flower bud differentiation in two kinds of Lycoris and the changes of carbohydrate, antioxidant enzymes and endogenous hormones [J]. Journal of Anhui Agricultural University, 2019, 46(2): 342−349.(in Chinese)
    [12]
    王桐霖, 吕梦雯, 徐金光, 等. 芍药鳞芽年发育进程及生理机制的研究 [J]. 植物生理学报, 2019, 55(8):1178−1190.

    WANG T L, LU M W, XU J G, et al. Study on the developmental process and physiological mechanism of the bulbils of Paeonia lactiflora [J]. Plant Physiology Communications, 2019, 55(8): 1178−1190.(in Chinese)
    [13]
    李小方, 王洋, 邓新杰, 等. 温度、GA3和乙烯对中国水仙休眠的解除 [J]. 植物生理学通讯, 2009, 45(10):953−957.

    LI X F, WANG Y, DENG X J, et al. Release of temperature, GA3 and ethylene to the dormancy of Chinese Narcissus(Narcissus tazetta var. chinensis roem.) [J]. Plant Physiology Communications, 2009, 45(10): 953−957.(in Chinese)
    [14]
    蔡春侠. 温度对水仙花球贮藏期间生理生化变化影响研究[D]. 福州: 福建农林大学, 2009.

    CAI C X. Studies on the effect of storage temperatures on physiological and biochemical changes of Narcissus tazetta L. bulb[D]. Fuzhou: Fujian Agriculture and Forestry University, 2009. (in Chinese)
    [15]
    LIU N, LIN Z F. Reactive oxygen species and alternative respiration in the developing flowers of two subtropical woody plants [J]. Journal of Plant Growth Regulation, 2013, 32(1): 83−91. doi: 10.1007/s00344-012-9278-4
    [16]
    李双铭, 徐庆国, 杨勇, 等. 低温胁迫对结缕草抗氧化酶活性和脂肪酸含量的影响 [J]. 草地学报, 2019, 27(4):906−912.

    LI S M, XU Q G, YANG Y, et al. Effects of low temperature stress on the antioxidant enzyme activities and fatty acid contents in Zoysiagrass [J]. Acta Agrestia Sinica, 2019, 27(4): 906−912.(in Chinese)
    [17]
    DAR R A, TAHIR I, AHMAD S S. Physiological and biochemical changes associated with flower development and senescence in Dianthus chinensis L. [J]. Indian Journal of Plant Physiology, 2014, 19(3): 215−221. doi: 10.1007/s40502-014-0104-9
    [18]
    XING L B, ZHANG D, LI Y M, et al. Transcription profiles reveal sugar and hormone signaling pathways mediating flower induction in apple (Malus domestica Borkh.) [J]. Plant and Cell Physiology, 2015, 56(10): 2052−2068. doi: 10.1093/pcp/pcv124
    [19]
    张衡锋, 韦庆翠, 汤庚国. 番红花花芽分化过程中内源激素和糖含量的变化 [J]. 云南农业大学学报(自然科学), 2018, 33(4):684−689.

    ZHANG H F, WEI Q C, TANG G G. Changes in the endogenous hormones and carbohydrate contents in Crocus sativus L. during floral bud differentiation [J]. Journal of Yunnan Agricultural University, 2018, 33(4): 684−689.(in Chinese)
    [20]
    林榕燕, 陈艺荃, 林兵, 等. 杂交兰‘黄金小神童’花芽分化过程形态与生理变化 [J]. 福建农业学报, 2019, 34(2):170−175.

    LIN R Y, CHEN Y Q, LIN B, et al. Morphological and physiological changes during flower bud differentiation of Cymbidium gold elf ‘Sun-dust' [J]. Fujian Journal of Agricultural Sciences, 2019, 34(2): 170−175.(in Chinese)
    [21]
    徐红霞, 李晓颖, 陈俊伟. 枇杷花发育进程中氨基酸和碳水化合物代谢的变化 [J]. 园艺学报, 2020, 47(2):233−241.

    XU H X, LI X Y, CHEN J W. Studies on the amino acid metabolism and carbohydrate metabolism variation during flower development in Eriobotrya japonica [J]. Acta Horticulturae Sinica, 2020, 47(2): 233−241.(in Chinese)
    [22]
    艾星梅, 何睿宇, 徐永艳, 等. 马铃薯开花与未开花品种的生理生化差异性研究 [J]. 江西农业大学学报, 2017, 39(2):230−236.

    AI X M, HE R Y, XU Y Y, et al. A study of physiological and biochemical changes in flowering and non-flowering potatoes [J]. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2017, 39(2): 230−236.(in Chinese)
    [23]
    臧纱纱, 赵尊练, 江山, 等. 线辣椒花芽分化过程的形态观察及部分代谢产物和酶活性的变化 [J]. 西北农林科技大学学报(自然科学版), 2014, 42(4):171−178, 186.

    ZANG S S, ZHAO Z L, JIANG S, et al. Morphology and changes in metabolites during floral bud differentiation of chili pepper [J]. Journal of Northwest A& F University (Natural Science Edition), 2014, 42(4): 171−178, 186.(in Chinese)
    [24]
    冯莹, 丁安琪, 潘东明. 水仙芽可溶性糖含量及NtTIM基因的表达分析 [J]. 基因组学与应用生物学, 2016, 35(12):3493−3500.

    FENG Y, DING A Q, PAN D M. Content of Soluble Sugar and Expression Analysis of NtTIM Gene from Bud in Narcissus tazetta var. chinensis [J]. Genomics and Applied Biology, 2016, 35(12): 3493−3500.(in Chinese)
    [25]
    庞夫花, 赵密珍, 王钰, 等. ‘宁玉’草莓花芽分化及其生化物质的变化 [J]. 果树学报, 2014, 31(6):1117−1122, 1201.

    PANG F H, ZHAO M Z, WANG Y, et al. Studies on floral bud differentiation and biochemical changes of ‘Ningyu’ strawberry [J]. Journal of Fruit Science, 2014, 31(6): 1117−1122, 1201.(in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (872) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return