• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 36 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
MIAO S Y, GAO X X, ZHENG L M, et al. Host Factors in Tobacco Interacting with N Protein of Tomato Spotted Wilt Virus [J]. Fujian Journal of Agricultural Sciences,2021,36(2):221−227 doi: 10.19303/j.issn.1008-0384.2021.02.013
Citation: MIAO S Y, GAO X X, ZHENG L M, et al. Host Factors in Tobacco Interacting with N Protein of Tomato Spotted Wilt Virus [J]. Fujian Journal of Agricultural Sciences,2021,36(2):221−227 doi: 10.19303/j.issn.1008-0384.2021.02.013

Host Factors in Tobacco Interacting with N Protein of Tomato Spotted Wilt Virus

doi: 10.19303/j.issn.1008-0384.2021.02.013
  • Received Date: 2020-10-30
  • Rev Recd Date: 2020-12-02
  • Available Online: 2021-02-08
  • Publish Date: 2021-02-28
  •   Objective  Host factors in Nicotiana benthamiana that interact with the N protein of tomato spotted wilt virus (TSWV), a representative member of plant negative stranded RNA viruses, were identified in preparation for further analysis on the regulation mechanism and in search for effective prevention and control of TSWV-induced disease on plants.   Method  Using the yeast two-hybrid (Y2H) method, proteins in N. benthamiana that interacted with the bait N protein of TSWV were screened.  Result   Fifteen host proteins were identified.   Conclusion  These identified proteins are known to be associated with pigment biosynthesis, thylakoid membrane assembly, plant defense response, ribosome biogenesis, lipid metabolism, and cellular functions in plants. Being upregulated in N. benthamiana infected by TSWV, these proteins might also act as auxiliary proteins in translating the regulation playing an important role in the development and response to abiotic stress of the plant.
  • loading
  • [1]
    DAVISON A, SIDDELL S, MUSHEGIAN A, et al. Virus Taxonomy[S]. International Committee on Taxonomy of Viruse, 2019.
    [2]
    PARRELLA G, GOGNALONS P, GEBRE-SELASSIE K, et al. An update of the host range of tomato spotted wilt virus [J]. Journal of Plant Pathology, 2003, 85(4): 227−264.
    [3]
    SCHOLTHOF K B G, ADKINS S, CZOSNEK H, et al. Top 10 plant viruses in molecular plant pathology [J]. Molecular Plant Pathology, 2011, 12(9): 938−954. doi: 10.1111/j.1364-3703.2011.00752.x
    [4]
    PRINS M, GOLDBACH R. The emerging problem of Tospovirus infection and nonconventional methods of control [J]. Trends in Microbiology, 1998, 6(1): 31−35. doi: 10.1016/S0966-842X(97)01173-6
    [5]
    CULBREATH A K, CSINOS A S, BERTRAND P F, et al. Tomato spotted wilt virus epidemic in fluecured tobacco in Georgia [J]. Plant Disease, 1991, 75: 483−485. doi: 10.1094/PD-75-0483
    [6]
    HU Z Z, FENG Z K, ZHANG Z J, et al. Complete genome sequence of a tomato spotted wilt virus isolate from China and comparison to other TSWV isolates of different geographic origin [J]. Archives of Virology, 2011, 156(10): 1905−1908. doi: 10.1007/s00705-011-1078-9
    [7]
    LIAN S, LEE J S, CHO W K, et al. Phylogenetic and recombination analysis of tomato spotted wilt virus [J]. PLoS One, 2013, 8(5): e63380. doi: 10.1371/journal.pone.0063380
    [8]
    SIVPRASAD B J, GUBBA A. Isolation and molecular characterization of Tomato spotted wilt virus (TSWV) isolates occurring in South Africa [J]. African Journal of Agricultural Research, 2008(3): 428−434.
    [9]
    NAGATA T, INOUE-NAGATA A K, PRINS M, et al. Impeded Thrips Transmission of Defective Tomato spotted wilt virus Isolates [J]. Phytopathology, 2000, 90(5): 454−459. doi: 10.1094/PHYTO.2000.90.5.454
    [10]
    TURINA M, KORMELINK R, RESENDE R O. Resistance to tospoviruses in vegetable crops: Epidemiological and molecular aspects [J]. Annual Review of Phytopathology, 2016, 54: 347−371. doi: 10.1146/annurev-phyto-080615-095843
    [11]
    WHITFIELD A E, KUMAR N K K, ROTENBERG D, et al. A soluble form of the Tomato spotted wilt virus (TSWV) glycoprotein G(N) (G(N)-S) inhibits transmission of TSWV by Frankliniella occidentalis [J]. Phytopathology, 2008, 98(1): 45−50. doi: 10.1094/PHYTO-98-1-0045
    [12]
    GUO Y, LIU B C, DING Z Z, et al. Distinct mechanism for the formation of the ribonucleoprotein complex of tomato spotted wilt virus [J]. Journal of Virology, 2017, 91(23): e00892. doi: 10.1128/jvi.00892-17
    [13]
    RICHMOND K E, CHENAULT K, SHERWOOD J L, et al. Characterization of the nucleic acid binding properties of tomato spotted wilt virus nucleocapsid protein [J]. Virology, 1998, 248(1): 6−11. doi: 10.1006/viro.1998.9223
    [14]
    SOELLICK T R, UHRIG J F, BUCHER G L, et al. The movement protein NSm of tomato spotted wilt Tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins [J]. PNAS, 2000, 97(5): 2373−2378. doi: 10.1073/pnas.030548397
    [15]
    RIBEIRO D, BORST J W, GOLDBACH R, et al. Tomato spotted wilt virus nucleocapsid protein interacts with both viral glycoproteins Gn and Gc in planta [J]. Virology, 2009, 383(1): 121−130. doi: 10.1016/j.virol.2008.09.028
    [16]
    KORMELINK R, STORMS M, VAN LENT J, et al. Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein [J]. Virology, 1994, 200(1): 56−65. doi: 10.1006/viro.1994.1162
    [17]
    FENG Z K, CHEN X J, BAO Y Q, et al. Nucleocapsid of Tomato spotted wilt Tospovirus forms mobile particles that traffic on an actin/endoplasmic Reticulum network driven by myosin XI-K [J]. The New Phytologist, 2013, 200(4): 1212−1224. doi: 10.1111/nph.12447
    [18]
    MARIS P C, JOOSTEN N N, GOLDBACH R W, et al. Restricted Spread of Tomato spotted wilt virus in Thrips-Resistant Pepper [J]. Phytopathology, 2003, 93(10): 1223−1227. doi: 10.1094/PHYTO.2003.93.10.1223
    [19]
    JAN F J, FAGOAGA C, PANG S Z, et al. A minimum length of N gene sequence in transgenic plants is required for RNA-mediated Tospovirus resistance [J]. The Journal of General Virology, 2000, 81(1): 235−242.
    [20]
    DE BUCK E, LEBEAU I, VAN MELLAERT L, et al. The use of the cMyc epitope tag can be problematic for protein detection in Legionella pneumophila [J]. Journal of Microbiological Methods, 2004, 59(1): 131−134. doi: 10.1016/j.mimet.2004.05.010
    [21]
    GREEN B R, PICHERSKY E, KLOPPSTECH K. Chlorophyll a/b-binding proteins: An extended family [J]. Trends in Biochemical Sciences, 1991, 16(5): 181−186.
    [22]
    CROCE R, CANINO G, ROS F, et al. Chromophore organization in the higher-plant photosystem II antenna protein CP26 [J]. Biochemistry, 2002, 41(23): 7334−7343. doi: 10.1021/bi0257437
    [23]
    SCHWARTE S, TIEDEMANN R. A gene duplication/loss event in the ribulose-1,5-bisphosphate-carboxylase/oxygenase (rubisco) small subunit gene family among accessions of Arabidopsis thaliana [J]. Molecular Biology and Evolution, 2011, 28(6): 1861−1876. doi: 10.1093/molbev/msr008
    [24]
    欧志远. 叶绿素含量与植物抗病性的关系 [J]. 安徽农学通报, 2007, 13(6):134−135. doi: 10.3969/j.issn.1007-7731.2007.06.075

    OU Z Y. Relationship of chlorophyll contents and plant disease-resistance [J]. Auhui Agricultural Science Bulletin, 2007, 13(6): 134−135.(in Chinese) doi: 10.3969/j.issn.1007-7731.2007.06.075
    [25]
    TILLER N, WEINGARTNER M, THIELE W, et al. The plastid-specific ribosomal proteins of Arabidopsis thaliana can be divided into non-essential proteins and genuine ribosomal proteins [J]. The Plant Journal, 2012, 69(2): 302−316. doi: 10.1111/j.1365-313X.2011.04791.x
    [26]
    BOGENGRUBER E, BRIZA P, DOPPLER E, et al. Functional analysis in yeast of the Brix protein superfamily involved in the biogenesis of ribosomes [J]. FEMS Yeast Research, 2003, 3(1): 35−43. doi: 10.1016/S1567-1356(02)00193-9
    [27]
    COHEN Y, STEPPUHN J, HERRMANN R G, et al. Insertion and assembly of the precursor of subunit II into the photosystem I complex may precede its processing [J]. The EMBO Journal, 1992, 11(1): 79−85. doi: 10.1002/j.1460-2075.1992.tb05030.x
    [28]
    LUNG S C, CHYE M L. The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism [J]. Biochimica et Biophysica Acta, 2016, 1861(9 Pt B): 1409−1421.
    [29]
    SAFI H, SAIBI W, ALAOUI M M, et al. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana [J]. Plant Physiology and Biochemistry, 2015, 89: 64−75. doi: 10.1016/j.plaphy.2015.02.008
    [30]
    ZHAO J, WANG S S, QIN J J, et al. The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice [J]. Plant Biotechnology Journal, 2020, 18(3): 756−769. doi: 10.1111/pbi.13243
    [31]
    ZHANG L L, WANG Y X, ZHANG Q K, et al. Overexpression of HbMBF1a, encoding multiprotein bridging factor 1 from the halophyte Hordeum brevisubulatum, confers salinity tolerance and ABA insensitivity to transgenic Arabidopsis thaliana [J]. Plant Molecular Biology, 2020, 102(1/2): 1−17.
    [32]
    LIANG K, PAREDES R, CARMODY R, et al. Human TRIB2 oscillates during the cell cycle and promotes ubiquitination and degradation of CDC25C [J]. International Journal of Molecular Sciences, 2016, 17(9): 1378. doi: 10.3390/ijms17091378
    [33]
    FENG X X, YANG S X, TANG K Q, et al. GmPGL1, a thiamine thiazole synthase, is required for the biosynthesis of thiamine in soybean [J]. Frontiers in Plant Science, 2019, 10: 1546. doi: 10.3389/fpls.2019.01546
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (1478) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return