Citation: | MIAO S Y, GAO X X, ZHENG L M, et al. Host Factors in Tobacco Interacting with N Protein of Tomato Spotted Wilt Virus [J]. Fujian Journal of Agricultural Sciences,2021,36(2):221−227 doi: 10.19303/j.issn.1008-0384.2021.02.013 |
[1] |
DAVISON A, SIDDELL S, MUSHEGIAN A, et al. Virus Taxonomy[S]. International Committee on Taxonomy of Viruse, 2019.
|
[2] |
PARRELLA G, GOGNALONS P, GEBRE-SELASSIE K, et al. An update of the host range of tomato spotted wilt virus [J]. Journal of Plant Pathology, 2003, 85(4): 227−264.
|
[3] |
SCHOLTHOF K B G, ADKINS S, CZOSNEK H, et al. Top 10 plant viruses in molecular plant pathology [J]. Molecular Plant Pathology, 2011, 12(9): 938−954. doi: 10.1111/j.1364-3703.2011.00752.x
|
[4] |
PRINS M, GOLDBACH R. The emerging problem of Tospovirus infection and nonconventional methods of control [J]. Trends in Microbiology, 1998, 6(1): 31−35. doi: 10.1016/S0966-842X(97)01173-6
|
[5] |
CULBREATH A K, CSINOS A S, BERTRAND P F, et al. Tomato spotted wilt virus epidemic in fluecured tobacco in Georgia [J]. Plant Disease, 1991, 75: 483−485. doi: 10.1094/PD-75-0483
|
[6] |
HU Z Z, FENG Z K, ZHANG Z J, et al. Complete genome sequence of a tomato spotted wilt virus isolate from China and comparison to other TSWV isolates of different geographic origin [J]. Archives of Virology, 2011, 156(10): 1905−1908. doi: 10.1007/s00705-011-1078-9
|
[7] |
LIAN S, LEE J S, CHO W K, et al. Phylogenetic and recombination analysis of tomato spotted wilt virus [J]. PLoS One, 2013, 8(5): e63380. doi: 10.1371/journal.pone.0063380
|
[8] |
SIVPRASAD B J, GUBBA A. Isolation and molecular characterization of Tomato spotted wilt virus (TSWV) isolates occurring in South Africa [J]. African Journal of Agricultural Research, 2008(3): 428−434.
|
[9] |
NAGATA T, INOUE-NAGATA A K, PRINS M, et al. Impeded Thrips Transmission of Defective Tomato spotted wilt virus Isolates [J]. Phytopathology, 2000, 90(5): 454−459. doi: 10.1094/PHYTO.2000.90.5.454
|
[10] |
TURINA M, KORMELINK R, RESENDE R O. Resistance to tospoviruses in vegetable crops: Epidemiological and molecular aspects [J]. Annual Review of Phytopathology, 2016, 54: 347−371. doi: 10.1146/annurev-phyto-080615-095843
|
[11] |
WHITFIELD A E, KUMAR N K K, ROTENBERG D, et al. A soluble form of the Tomato spotted wilt virus (TSWV) glycoprotein G(N) (G(N)-S) inhibits transmission of TSWV by Frankliniella occidentalis [J]. Phytopathology, 2008, 98(1): 45−50. doi: 10.1094/PHYTO-98-1-0045
|
[12] |
GUO Y, LIU B C, DING Z Z, et al. Distinct mechanism for the formation of the ribonucleoprotein complex of tomato spotted wilt virus [J]. Journal of Virology, 2017, 91(23): e00892. doi: 10.1128/jvi.00892-17
|
[13] |
RICHMOND K E, CHENAULT K, SHERWOOD J L, et al. Characterization of the nucleic acid binding properties of tomato spotted wilt virus nucleocapsid protein [J]. Virology, 1998, 248(1): 6−11. doi: 10.1006/viro.1998.9223
|
[14] |
SOELLICK T R, UHRIG J F, BUCHER G L, et al. The movement protein NSm of tomato spotted wilt Tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins [J]. PNAS, 2000, 97(5): 2373−2378. doi: 10.1073/pnas.030548397
|
[15] |
RIBEIRO D, BORST J W, GOLDBACH R, et al. Tomato spotted wilt virus nucleocapsid protein interacts with both viral glycoproteins Gn and Gc in planta [J]. Virology, 2009, 383(1): 121−130. doi: 10.1016/j.virol.2008.09.028
|
[16] |
KORMELINK R, STORMS M, VAN LENT J, et al. Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein [J]. Virology, 1994, 200(1): 56−65. doi: 10.1006/viro.1994.1162
|
[17] |
FENG Z K, CHEN X J, BAO Y Q, et al. Nucleocapsid of Tomato spotted wilt Tospovirus forms mobile particles that traffic on an actin/endoplasmic Reticulum network driven by myosin XI-K [J]. The New Phytologist, 2013, 200(4): 1212−1224. doi: 10.1111/nph.12447
|
[18] |
MARIS P C, JOOSTEN N N, GOLDBACH R W, et al. Restricted Spread of Tomato spotted wilt virus in Thrips-Resistant Pepper [J]. Phytopathology, 2003, 93(10): 1223−1227. doi: 10.1094/PHYTO.2003.93.10.1223
|
[19] |
JAN F J, FAGOAGA C, PANG S Z, et al. A minimum length of N gene sequence in transgenic plants is required for RNA-mediated Tospovirus resistance [J]. The Journal of General Virology, 2000, 81(1): 235−242.
|
[20] |
DE BUCK E, LEBEAU I, VAN MELLAERT L, et al. The use of the cMyc epitope tag can be problematic for protein detection in Legionella pneumophila [J]. Journal of Microbiological Methods, 2004, 59(1): 131−134. doi: 10.1016/j.mimet.2004.05.010
|
[21] |
GREEN B R, PICHERSKY E, KLOPPSTECH K. Chlorophyll a/b-binding proteins: An extended family [J]. Trends in Biochemical Sciences, 1991, 16(5): 181−186.
|
[22] |
CROCE R, CANINO G, ROS F, et al. Chromophore organization in the higher-plant photosystem II antenna protein CP26 [J]. Biochemistry, 2002, 41(23): 7334−7343. doi: 10.1021/bi0257437
|
[23] |
SCHWARTE S, TIEDEMANN R. A gene duplication/loss event in the ribulose-1,5-bisphosphate-carboxylase/oxygenase (rubisco) small subunit gene family among accessions of Arabidopsis thaliana [J]. Molecular Biology and Evolution, 2011, 28(6): 1861−1876. doi: 10.1093/molbev/msr008
|
[24] |
欧志远. 叶绿素含量与植物抗病性的关系 [J]. 安徽农学通报, 2007, 13(6):134−135. doi: 10.3969/j.issn.1007-7731.2007.06.075
OU Z Y. Relationship of chlorophyll contents and plant disease-resistance [J]. Auhui Agricultural Science Bulletin, 2007, 13(6): 134−135.(in Chinese) doi: 10.3969/j.issn.1007-7731.2007.06.075
|
[25] |
TILLER N, WEINGARTNER M, THIELE W, et al. The plastid-specific ribosomal proteins of Arabidopsis thaliana can be divided into non-essential proteins and genuine ribosomal proteins [J]. The Plant Journal, 2012, 69(2): 302−316. doi: 10.1111/j.1365-313X.2011.04791.x
|
[26] |
BOGENGRUBER E, BRIZA P, DOPPLER E, et al. Functional analysis in yeast of the Brix protein superfamily involved in the biogenesis of ribosomes [J]. FEMS Yeast Research, 2003, 3(1): 35−43. doi: 10.1016/S1567-1356(02)00193-9
|
[27] |
COHEN Y, STEPPUHN J, HERRMANN R G, et al. Insertion and assembly of the precursor of subunit II into the photosystem I complex may precede its processing [J]. The EMBO Journal, 1992, 11(1): 79−85. doi: 10.1002/j.1460-2075.1992.tb05030.x
|
[28] |
LUNG S C, CHYE M L. The binding versatility of plant acyl-CoA-binding proteins and their significance in lipid metabolism [J]. Biochimica et Biophysica Acta, 2016, 1861(9 Pt B): 1409−1421.
|
[29] |
SAFI H, SAIBI W, ALAOUI M M, et al. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana [J]. Plant Physiology and Biochemistry, 2015, 89: 64−75. doi: 10.1016/j.plaphy.2015.02.008
|
[30] |
ZHAO J, WANG S S, QIN J J, et al. The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice [J]. Plant Biotechnology Journal, 2020, 18(3): 756−769. doi: 10.1111/pbi.13243
|
[31] |
ZHANG L L, WANG Y X, ZHANG Q K, et al. Overexpression of HbMBF1a, encoding multiprotein bridging factor 1 from the halophyte Hordeum brevisubulatum, confers salinity tolerance and ABA insensitivity to transgenic Arabidopsis thaliana [J]. Plant Molecular Biology, 2020, 102(1/2): 1−17.
|
[32] |
LIANG K, PAREDES R, CARMODY R, et al. Human TRIB2 oscillates during the cell cycle and promotes ubiquitination and degradation of CDC25C [J]. International Journal of Molecular Sciences, 2016, 17(9): 1378. doi: 10.3390/ijms17091378
|
[33] |
FENG X X, YANG S X, TANG K Q, et al. GmPGL1, a thiamine thiazole synthase, is required for the biosynthesis of thiamine in soybean [J]. Frontiers in Plant Science, 2019, 10: 1546. doi: 10.3389/fpls.2019.01546
|