• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 35 Issue 12
Dec.  2020
Turn off MathJax
Article Contents
CHEN L H, LYU X, LIU L Y, et al. Ammonia-oxidizing Bacteria Community in Rhizosphere Soils of Minjiang Estuary Wetlands [J]. Fujian Journal of Agricultural Sciences,2020,35(12):1368−1375 doi: 10.19303/j.issn.1008-0384.2020.12.010
Citation: CHEN L H, LYU X, LIU L Y, et al. Ammonia-oxidizing Bacteria Community in Rhizosphere Soils of Minjiang Estuary Wetlands [J]. Fujian Journal of Agricultural Sciences,2020,35(12):1368−1375 doi: 10.19303/j.issn.1008-0384.2020.12.010

Ammonia-oxidizing Bacteria Community in Rhizosphere Soils of Minjiang Estuary Wetlands

doi: 10.19303/j.issn.1008-0384.2020.12.010
  • Received Date: 2020-11-01
  • Rev Recd Date: 2020-11-27
  • Publish Date: 2020-12-31
  •   Objective  Community and diversity of ammonia-oxidizing bacteria in rhizosphere soils of reeds, smooth cordgrasses, and mangroves on the wetlands at Minjiang estuaries were studied.   Method  Twenty-four rhizosphere soil specimens in different layers on the wetlands were collected in 4 seasons with the multi-point mixed sampling method. Sequence of amoA gene in the specimens was determined by the high-throughput sequencing technology for a bioinformatic analysis on the ammonia-oxidizing bacteria community at the sites.   Result  A total of 300 527 final tags and 2 794 OTUs were detected in the collected specimens. The OTU-based diversity analysis showed little difference on the Chao index among the reed, smooth cordgrass, and mangrove rhizosphere soils. The Shannon index of the mangrove soil was higher than that of the reed soil, while that of the smooth cordgrass soil being the lowest. The Chao and Shannon indices of the reed and mangrove soils were lowest in spring. There was no apparent pattern on the Chao or Shannon index of the soils in different depths. The taxonomy of many of the ammonia-oxidizing bacteria could not be clearly classified. The dominant phylum of the microbes identified in the soils was Proteobacteria, and Nitrosomonas, Thiobacillus, and Caldimonas being the predominant genera.   Conclusion  Nitrosomonas presented in most of the rhizosphere soils at the Minjiang estuary wetlands, but Thiobacillus and Caldimonas were dominant in individual soil specimens.
  • loading
  • [1]
    惠丽华, 赵吉, 武琳慧, 等. 辉腾锡勒草原干涸湖泊中氨氧化微生物群落结构分析 [J]. 微生物学报, 2012, 52(1):104−113.

    HUI L H, ZHAO J, WU L H, et al. Community structure of ammonia-oxidizing prokaryotes at the dry-up lake in Huitengxile Grassland [J]. Acta Microbiologica Sinica, 2012, 52(1): 104−113.(in Chinese)
    [2]
    MYERS N, MITTERMEIER R A, MITTERMEIER C G, et al. Biodiversity hotspots for conservation priorities [J]. Nature, 2000, 403(6772): 853−858. doi: 10.1038/35002501
    [3]
    贺惠, 陈阳阳, 王勋功, 等. 海洋沉积物氨氧化菌群落结构的测序分析 [J]. 海洋科学, 2018, 42(8):22−29. doi: 10.11759/hykx20171215002

    HE H, CHEN Y Y, WANG X G, et al. Analysis of ammonia-oxidizing bacteria community structure in marine sediments using different sequencing technologies [J]. Marine Sciences, 2018, 42(8): 22−29.(in Chinese) doi: 10.11759/hykx20171215002
    [4]
    王翠华, 武菲, 胡文革, 等. 艾比湖湿地三种植物根际土壤氨氧化细菌群落的多样性 [J]. 微生物学报, 2015, 55(9):1190−1200.

    WANG C H, WU F, HU W G, et al. Community diversity of ammonia-oxidizing bacteria of three plants rhizosphere in Ebinur Lake wetland [J]. Acta Microbiologica Sinica, 2015, 55(9): 1190−1200.(in Chinese)
    [5]
    陈伟, 季秀玲, 李建凯, 等. 纳帕海高原湿地氨氧化微生物群落结构及多样性研究 [J]. 昆明理工大学学报(自然科学版), 2019, 44(1):74−84.

    CHEN W, JI X L, LI J K, et al. Community and diversity of ammonia oxidation microbial in Napahai plateau wetland [J]. Journal of Kunming University of Science and Technology (Natural Science), 2019, 44(1): 74−84.(in Chinese)
    [6]
    MING H X, ZHANG H Z, CHEN Q R, et al. Abundance and community structure of ammonium monooxygenase (AmoA) genes in the wet season of Liaohe estuary sediments [J]. Continental Shelf Research, 2020, 209: 104253. doi: 10.1016/j.csr.2020.104253
    [7]
    郝永俊, 吴松维, 吴伟祥, 等. 好氧氨氧化菌的种群生态学研究进展 [J]. 生态学报, 2007, 27(4):1573−1582. doi: 10.3321/j.issn:1000-0933.2007.04.038

    HAO Y J, WU S W, WU W X, et al. Research progress on the microbial ecology of aerobic ammonia-oxidizing bacteria [J]. Acta Ecologica Sinica, 2007, 27(4): 1573−1582.(in Chinese) doi: 10.3321/j.issn:1000-0933.2007.04.038
    [8]
    CHANG Y K, FAN J F, SU J, et al. Spatial abundance, diversity, and activity of ammonia-oxidizing bacteria in coastal sediments of the Liaohe estuary [J]. Current Microbiology, 2017, 74(5): 632−640. doi: 10.1007/s00284-017-1226-x
    [9]
    唐修峰, 秦华, 匡璐, 等. 基于宏基因组学的酸性森林土壤氨氧化微生物群落特征研究 [J]. 土壤学报, 2020. doi: 10.11766/trxb202002020040

    TANG X F, QIN H, KUANG L, et al. Metagenomics based study on community characteristics of ammonia-oxidizing microorganisms in acid forest soil [J]. Acta Pedologica Sinica, 2020.(in Chinese) doi: 10.11766/trxb202002020040
    [10]
    王蓉, 朱杰, 金涛, 等. 稻虾共作模式下稻田土壤氨氧化微生物丰度和群落结构的特征 [J]. 植物营养与肥料学报, 2019, 25(11):1887−1899. doi: 10.11674/zwyf.18414

    WANG R, ZHU J, JIN T, et al. Characteristics of ammonia oxidation microbial abundance and community structure in paddy soils of rice-crayfish symbiosis farming system [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(11): 1887−1899.(in Chinese) doi: 10.11674/zwyf.18414
    [11]
    ISLAM G M, VI P, GILBRIDE K A. Functional relationship between ammonia-oxidizing bacteria and ammonia-oxidizing Archaea populations in the secondary treatment system of a full-scale municipal wastewater treatment plant [J]. Journal of Environmental Sciences, 2019, 86: 120−130. doi: 10.1016/j.jes.2019.04.031
    [12]
    郑洁, 刘金福, 吴则焰, 等. 闽江河口红树林土壤微生物群落对互花米草入侵的响应 [J]. 生态学报, 2017, 37(21):7293−7303.

    ZHENG J, LIU J F, WU Z Y, et al. Soil microbial community of mangrove forests and its responses to the invasion of Spartina alterniflora in the Minjiang River Estuary [J]. Acta Ecologica Sinica, 2017, 37(21): 7293−7303.(in Chinese)
    [13]
    赵紫檀, 郑洁, 吴则焰, 等. 互花米草入侵下红树林土壤微生物群落特征 [J]. 森林与环境学报, 2017, 37(2):169−173.

    ZHAO Z T, ZHENG J, WU Z Y, et al. Features of Mangrove soil microbial community with Spartina alterniflora invaded [J]. Journal of Forest and Environment, 2017, 37(2): 169−173.(in Chinese)
    [14]
    佘晨兴, 仝川. 闽江口芦苇沼泽湿地土壤产甲烷菌群落结构的垂直分布 [J]. 生态学报, 2012, 32(17):5299−5308. doi: 10.5846/stxb201203050299

    SHE C X, TONG C. Vertical distribution of methanogen community structures in Phragmites australis marsh soil in the Min River estuary [J]. Acta Ecologica Sinica, 2012, 32(17): 5299−5308.(in Chinese) doi: 10.5846/stxb201203050299
    [15]
    曾志华, 杨民和, 佘晨兴, 等. 闽江河口区淡水和半咸水潮汐沼泽湿地土壤产甲烷菌多样性 [J]. 生态学报, 2014, 34(10):2764−2681.

    ZENG Z H, YANG M H, SHE J X, et al. Diversity of methanogen communities in tidal freshwater and brackish marsh soil in the Min River estuary [J]. Acta Ecologica Sinica, 2014, 34(10): 2764−2681.(in Chinese)
    [16]
    陈丽华, 吕新, 刘兰英, 等. 闽江河口湿地土壤硝化-反硝化细菌数量的时空分布特征 [J]. 福建农业学报, 2018, 33(10):1078−1083.

    CHEN L H, LYU X, LIU L Y, et al. Spatiotemporal distributions of nitrifying and denitrifying bacteria in soil of Minjiang estuary wetland [J]. Fujian Journal of Agricultural Sciences, 2018, 33(10): 1078−1083.(in Chinese)
    [17]
    ROTTHAUWE J H, WITZEL K P, LIESACK W. The ammonia monooxygenase structural gene AmoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations [J]. Applied and Environmental Microbiology, 1997, 63(12): 4704−4712. doi: 10.1128/AEM.63.12.4704-4712.1997
    [18]
    SURA-DE JONG M, REYNOLDS R J, RICHTEROVA K, et al. Selenium hyperaccumulators harbor a diverse endophytic bacterial community characterized by high selenium resistance and plant growth promoting properties [J]. Frontiers in Plant Science, 2015, 6: 113.
    [19]
    张爱娣, 郑仰雄, 吴碧珊, 等. 滨海湿地土壤微生物群落多样性及其影响因素 [J]. 水土保持研究, 2020, 27(3):8−14, 22.

    ZHANG A D, ZHENG Y X, WU B S, et al. Soil microbial community diversity and its influencing factors in coastal wetland [J]. Research of Soil and Water Conservation, 2020, 27(3): 8−14, 22.(in Chinese)
    [20]
    CHAPARRO J M, BADRI D V, BAKKER M G, et al. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions [J]. PLoS One, 2013, 8(2): e55731. doi: 10.1371/journal.pone.0055731
    [21]
    CHAPARRO J M, BADRI D V, VIVANCO J M. Rhizosphere microbiome assemblage is affected by plant development [J]. The ISME Journal, 2014, 8(4): 790−803. doi: 10.1038/ismej.2013.196
    [22]
    李振灵, 丁彦礼, 白少元, 等. 潜流人工湿地基质结构与微生物群落特征的相关性 [J]. 环境科学, 2017, 38(9):3713−3720.

    LI Z L, DING Y L, BAI S Y, et al. Correlations Between Substrate Structure and Microbial Community in Subsurface Flow Constructed Wetlands [J]. Environmental Science, 2017, 38(9): 3713−3720.(in Chinese)
    [23]
    LIU J, YI N K, WANG S, et al. Impact of plant species on spatial distribution of metabolic potential and functional diversity of microbial communities in a constructed wetland treating aquaculture wastewater [J]. Ecological Engineering, 2016, 94: 564−573. doi: 10.1016/j.ecoleng.2016.06.106
    [24]
    VYMAZAL J. Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: A review [J]. Journal of Environmental Science and Health, Part A, 2005, 40(6/7): 1355−1367.
    [25]
    STOTTMEISTER U, WIEßNER A, KUSCHK P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment [J]. Biotechnology Advances, 2003, 22(1/2): 93−117.
    [26]
    沈琦, 郝雅荞, 徐潇航, 等. 基于高通量测序技术的盐地碱蓬根际细菌群落多样性分析 [J]. 浙江理工大学学报(自然科学版), 2020, 43(5):671−677.

    SHEN Q, HAO Y Q, XU X H, et al. Analysis of rhizosphere bacterial diversity in Suaeda glauca Bunge based on high-throughput sequencing [J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2020, 43(5): 671−677.(in Chinese)
    [27]
    KE X B, LU Y H. Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil [J]. FEMS Microbiology Ecology, 2012, 80(1): 87−97. doi: 10.1111/j.1574-6941.2011.01271.x
    [28]
    贺纪正, 沈菊培, 张丽梅. 土壤硝化作用的新机理-氨氧化古菌在酸性土壤氨氧化中的主导作用 [J]. 科学观察, 2012, 7(6):58−60.

    HE J Z, SHEN J P, ZHANG L M. A new mechanism of soil nitrification-the leading role of ammonia oxidizing archaea in acid soil ammonia oxidation [J]. Science Focus, 2012, 7(6): 58−60.(in Chinese)
    [29]
    DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria [J]. Nature, 2015, 528(7583): 504−509. doi: 10.1038/nature16461
    [30]
    VAN KESSEL M A H J, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism [J]. Nature, 2015, 528(7583): 555−559. doi: 10.1038/nature16459
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (553) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return