Citation: | ZHANG Y, ZHANG K, MA J, et al. Proteomes of Sheep Alveolar and Mouse Macrophages Infected by Mycoplasma ovipneumoniae [J]. Fujian Journal of Agricultural Sciences,2020,35(11):1244−1251 doi: 10.19303/j.issn.1008-0384.2020.11.010 |
[1] |
CARMICHAEL L E, ST GEORGE T D, SULLIVAN N D, et al. Isolation, propagation, and characterization studies of an ovine Mycoplasma responsible for proliferative interstitial pneumonia [J]. The Cornell Veterinarian, 1972, 62(4): 654−679.
|
[2] |
BESSER T E, FRANCES CASSIRER E, HIGHLAND M A, et al. Bighorn sheep pneumonia: Sorting out the cause of a polymicrobial disease [J]. Preventive Veterinary Medicine, 2013, 108(2/3): 85−93.
|
[3] |
BESSER T E, CASSIRER E F, POTTER K A, et al. Epizootic pneumonia of Bighorn sheep following experimental exposure to Mycoplasma ovipneumoniae [J]. PLoS One, 2014, 9(10): e110039. doi: 10.1371/journal.pone.0110039
|
[4] |
ABDEL HALIUM M M, SALIB F A, MAROUF S A, et al. Isolation and molecular characterization of Mycoplasma spp. in sheep and goats in Egypt [J]. Veterinary World, 2019, 12(5): 664−670. doi: 10.14202/vetworld.2019.664-670
|
[5] |
STIPKOVITS L, BELAK S, PALFI V, et al. Isolation of Mycoplasma ovipneumoniae from sheep with pneumonia [J]. Acta Vet Acad Sci Hung, 1975, 25(2-3): 267−273.
|
[6] |
王华, 杨发龙, 王永, 等. 山羊支原体性肺炎流行病学调查 [J]. 中国畜牧兽医, 2011, 38(1):210−214.
WANG H, YANG F L, WANG Y, et al. Epidemiological investigation of caprine Mycoplasma pneumoniae in Sichuan Province [J]. China Animal Husbandry & Veterinary Medicine, 2011, 38(1): 210−214.(in Chinese)
|
[7] |
GONÇALVES R, MARIANO I, NÚÑEZ A, et al. Atypical non-progressive pneumonia in goats [J]. The Veterinary Journal, 2010, 183(2): 219−221. doi: 10.1016/j.tvjl.2008.10.005
|
[8] |
ELLIOTT M R, KOSTER K M, MURPHY P S. Efferocytosis signaling in the regulation of macrophage inflammatory responses [J]. The Journal of Immunology, 2017, 198(4): 1387−1394. doi: 10.4049/jimmunol.1601520
|
[9] |
NIANG M, ROSENBUSCH R F, LOPEZ-VIRELLA J, et al. Expression of functions by normal sheep alveolar macrophages and their alteration by interaction with Mycoplasma ovipneumoniae [J]. Veterinary Microbiology, 1997, 58(1): 31−43. doi: 10.1016/S0378-1135(97)00141-7
|
[10] |
LUO H X, WU X X, XU Z K, et al. NOD2/c-Jun NH2-terminal kinase triggers Mycoplasma ovipneumoniae-induced macrophage autophagy[J]. Journal of Bacteriology, 2020, 202(20). DOI: 10.1128/jb.00689-19.
|
[11] |
LI G, FAN L P, WANG Y Q, et al. High co-expression of TNF-α and CARDS toxin is a good predictor for refractory Mycoplasma pneumoniae pneumonia [J]. Molecular Medicine, 2019, 25: 38.
|
[12] |
JIANG F, HE J Y, NAVARRO-ALVAREZ N, et al. Elongation factor Tu and heat shock protein 70 are membrane-associated proteins from Mycoplasma ovipneumoniae capable of inducing strong immune response in mice [J]. PLoS One, 2016, 11(8): e0161170. doi: 10.1371/journal.pone.0161170
|
[13] |
YANG M Y, MENG F Z, GAO M, et al. Cytokine signatures associate with disease severity in children with Mycoplasma pneumoniae pneumonia [J]. Scientific Reports, 2019, 9: 17853. doi: 10.1038/s41598-019-54313-9
|
[14] |
MARINARO M, GRECO G, TARSITANO E, et al. Changes in peripheral blood leucocytes of sheep experimentally infected with Mycoplasma agalactiae [J]. Veterinary Microbiology, 2015, 175(2/3/4): 257−264.
|
[15] |
BAO J, WU Z, ISHFAQ M, et al. Comparison of experimental infection of normal and immunosuppressed chickens with Mycoplasma gallisepticum [J]. Journal of Comparative Pathology, 2020, 175: 5−12. doi: 10.1016/j.jcpa.2019.12.001
|
[16] |
LI X, ZHANG Y K, YIN B, et al. Toll-like receptor 2 (TLR2) and TLR4 mediate the Iga immune response induced by Mycoplasma hyopneumoniae [J]. Infection and Immunity, 2019, 88(1). DOI: 10.1128/iai.00697-19.
|
[17] |
NAGHIB M, HATAM-JAHROMI M, NIKTAB M, et al. Mycoplasma pneumoniae and toll-like receptors: a mutual avenue [J]. Allergologia et Immunopathologia, 2018, 46(5): 508−513. doi: 10.1016/j.aller.2017.09.021
|
[18] |
ZHANG Y Y, MEI S F, ZHOU Y L, et al. TIPE2 negatively regulates Mycoplasma pneumonia-triggered immune response via MAPK signaling pathway [J]. Scientific Reports, 2017, 7: 13319. doi: 10.1038/s41598-017-13825-y
|
[19] |
HWANG M H, DAMTE D, LEE J S, et al. Mycoplasma hyopneumoniae induces pro-inflammatory cytokine and nitric oxide production through NFκB and MAPK pathways in RAW264.7 cells [J]. Veterinary Research Communications, 2011, 35(1): 21−34. doi: 10.1007/s11259-010-9447-5
|
[20] |
LU Z Y, XIE D Y, CHEN Y, et al. TLR2 mediates autophagy through ERK signaling pathway in Mycoplasma gallisepticum-infected RAW264.7 cells [J]. Molecular Immunology, 2017, 87: 161−170. doi: 10.1016/j.molimm.2017.04.013
|