• 中文核心期刊
  • CSCD来源期刊
  • 中国科技核心期刊
  • CA、CABI、ZR收录期刊

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review,        editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Volume 35 Issue 8
Aug.  2020
Turn off MathJax
Article Contents
OU Y R, WANG K X, YU B, et al. Enhancing Sentinel-2 Images for Accurate Identification of Rapeseed Crops in Mountainous Southwest China [J]. Fujian Journal of Agricultural Sciences,2020,35(8):902−910 doi: 10.19303/j.issn.1008-0384.2020.08.014
Citation: OU Y R, WANG K X, YU B, et al. Enhancing Sentinel-2 Images for Accurate Identification of Rapeseed Crops in Mountainous Southwest China [J]. Fujian Journal of Agricultural Sciences,2020,35(8):902−910 doi: 10.19303/j.issn.1008-0384.2020.08.014

Enhancing Sentinel-2 Images for Accurate Identification of Rapeseed Crops in Mountainous Southwest China

doi: 10.19303/j.issn.1008-0384.2020.08.014
  • Received Date: 2020-04-09
  • Rev Recd Date: 2020-08-19
  • Publish Date: 2020-08-19
  •   Objective  Means to upgrade the resolution of the images obtained by the currently available Slentinel-2 optical imagery technology were explored for better identification of rapeseed crops in mountainous southwest China.   Method  Sentinel-2 images of rapeseed crops acquired from the satellite in space were modified using image reconstruction and fusion technology to increase the spatial resolution by varying the spectral bands. Image quality as to how accurate it could recognize rapeseed crops was evaluated based on a random forest, complex terrain model.   Result  ① The fusion treatment significantly enhanced the contrast on minute details and texture changes, greatly improved the sharpness, and increased the brightness of the images. Meanwhile, the gray curves of the main features remained basically unchanged before and after the treatment. ② The enhanced spatial resolution effectively facilitated vegetation classification. The overall accuracy and Kappa coefficient differed slightly at the resolution of 2m. However, the crop mapping accuracy was significantly improved from 91.30% to 95.65% by the red edge bands applied. ③ Different red edge bands exhibited varying effects on the recognition accuracy. The combination of C2 (visible light B2, B3, and B4-red edge B5-near infrared B8) and C1 (visible light B2, B3, and B4-near infrared B8) increased the accuracy by 4.75%. The combined C3 (visible light B2, B3, B4-red edge B5, and B6-near infrared B8) and C2 enhanced the accuracy by 1.21%. Although both red edge B5 and B6 bands could improve the overall accuracy, B5 was more effective than B6. The combination of C4 (visible light B2, B3, B4-red edge B5, B6, 7-near infrared B8) and C3 resulted in an increase on the mapping accuracy by 4.35% as well as a user accuracy by 0.57%. The red edge B7 was most effective of all. The random forest model showed, under the improved conditions, the normalized importance metrics of characteristic band for the blue band B2 to be 0.94; for the green band B3, 0.82; for the red band B7, 0.89; and, for the red edge B5, 0.75. The results, consistent with those obtained under the band combinations, indicated that B7 and B5 bands contributed more significantly to the accuracy improvement.   Conclusion  The spatial resolution of Sentinel-2 images could be significantly enhanced through image reconstruction and fusion. The accuracy of rapeseed crop identification by various band combinations was analyzed by the quantitative measurements of the importance of characteristic bands under the random forest classification model to arrive at the conclusion. As the first comprehensive study of its kind, the information obtained would be of value for further applications of the Sentinel-2 imaging system.
  • loading
  • [1]
    李宗南, 王昕, 蒋怡, 等. 基于RapidEye影像的石漠化区休耕地块监测 [J]. 中国农业资源与区划, 2019, 40(8):89−94.

    LI Z N, WANG X, JIANG Y, et al. Monitoring fallow farmland in rock desertification region by using rapideye image [J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(8): 89−94.(in Chinese)
    [2]
    乌云德吉, 于利峰, 包珺玮, 等. RapidEye卫星红边波段对主要农作物识别能力的影响研究 [J]. 北方农业学报, 2017, 45(6):118−123. doi: 10.3969/j.issn.2096-1197.2017.06.22

    WUYUNDEJI, YU L F, BAO J W, et al. Impact of red-edge wave band of RapidEye satellite on recognition ability of main crop [J]. Journal of Northern Agriculture, 2017, 45(6): 118−123.(in Chinese) doi: 10.3969/j.issn.2096-1197.2017.06.22
    [3]
    张卫春, 刘洪斌, 武伟. 基于随机森林和Sentinel-2影像数据的低山丘陵区土地利用分类——以重庆市江津区李市镇为例 [J]. 长江流域资源与环境, 2019, 28(6):1334−1343.

    ZHANG W C, LIU H B, WU W. Classification of land use in low mountain and hilly area based on random forest and Sentinel-2 satellite data: a case study of Li shi Town, Jiang jin, Chongqing [J]. Resources and Environment in the Yangtze Basin, 2019, 28(6): 1334−1343.(in Chinese)
    [4]
    李龙伟, 李楠, 陆灯盛. 多时相Sentinel-2影像在浙西北茶园信息提取中的应用 [J]. 浙江农林大学学报, 2019, 36(5):841−848.

    LI L W, LI N, LU D S. Mapping tea gardens spatial distribution in northwestern Zhejiang Province using multi-temporal Sentinel-2 imagery [J]. Journal of Zhejiang A & F University, 2019, 36(5): 841−848.(in Chinese)
    [5]
    郭文婷, 张晓丽. 基于Sentinel-2时序多特征的植被分类 [J]. 浙江农林大学学报, 2019, 36(5):849−856.

    GUO W T, ZHANG X L. Vegetation classification based on a multi-feature Sentinel-2 time series [J]. Journal of Zhejiang A & F University, 2019, 36(5): 849−856.(in Chinese)
    [6]
    SELVA M, AIAZZI B, BUTERA F, et al. Hyper-sharpening: a first approach on SIM-GA data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6): 3008−3024. doi: 10.1109/JSTARS.2015.2440092
    [7]
    WANG Q M, SHI W Z, LI Z B, et al. Fusion of Sentinel-2 images [J]. Remote Sensing of Environment, 2016, 187: 241−252. doi: 10.1016/j.rse.2016.10.030
    [8]
    梁丽娟, 黄万里, 张容焱, 等. Sentinel-2卫星影像融合方法与质量评价分析 [J]. 遥感技术与应用, 2019, 34(3):612−621.

    LIANG L J, HUANG W L, ZHANG R Y, et al. Sentinel-2 satellite image fusion method and quality evaluation analysis [J]. Remote Sensing Technology and Application, 2019, 34(3): 612−621.(in Chinese)
    [9]
    BRODU N. Super-resolving multiresolution images with band-independent geometry of multispectral pixels [J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4610−4617. doi: 10.1109/TGRS.2017.2694881
    [10]
    张焕雪, 李强子. 空间分辨率对作物识别及种植面积估算的影响研究 [J]. 遥感信息, 2014, 29(2):36−40.

    ZHANG H X, LI Q Z. Effects of spatial resolution on crop identification and acreage estimation [J]. Remote Sensing Information, 2014, 29(2): 36−40.(in Chinese)
    [11]
    孔令婷, 杨英宝, 章勇. 基于不同分辨率遥感影像的分类方法对比研究 [J]. 测绘与空间地理信息, 2015, 38(3):40−43. doi: 10.3969/j.issn.1672-5867.2015.03.014

    KONG L T, YANG Y B, ZHANG Y. Study on classification methods based on different resolution remote sensing imga E [J]. Geomatics & Spatial Information Technology, 2015, 38(3): 40−43.(in Chinese) doi: 10.3969/j.issn.1672-5867.2015.03.014
    [12]
    王利民, 刘佳, 高建孟, 等. 冬小麦面积遥感识别精度与空间分辨率的关系 [J]. 农业工程学报, 2016, 32(23):152−160. doi: 10.11975/j.issn.1002-6819.2016.23.021

    WANG L M, LIU J, GAO J M, et al. Relationship between accuracy of winter wheat area remote sensing identification and spatial resolution [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(23): 152−160.(in Chinese) doi: 10.11975/j.issn.1002-6819.2016.23.021
    [13]
    朝鲁门, 宁小莉, 包玉海, 等. 基于GF-2的沙地区域影像融合方法与评价: 以内蒙古自治区正蓝旗北部典型沙地为例 [J]. 水土保持通报, 2019, 39(4):138−143.

    CHAO L M, NING X L, BAO Y H, et al. Image fusion methods and evaluation in sandy area based on GF-2 Satellite data: a case study in north Zheng lan Banner of inner mongolia autonomous region [J]. Bulletin of Soil and Water Conservation, 2019, 39(4): 138−143.(in Chinese)
    [14]
    LI X J, CHEN G, LIU J Y, et al. Effects of RapidEye imagery's red-edge band and vegetation indices on land cover classification in an arid region [J]. Chinese Geographical Science, 2017, 27(5): 827−835. doi: 10.1007/s11769-017-0894-6
    [15]
    WASKE B, VAN DER LINDEN S, OLDENBURG C, et al. imageRF – A user-oriented implementation for remote sensing image analysis with Random Forests [J]. Environmental Modelling & Software, 2012, 35: 192−193.
    [16]
    杨珺雯, 张锦水, 朱秀芳, 等. 随机森林在高光谱遥感数据中降维与分类的应用 [J]. 北京师范大学学报(自然科学版), 2015, 51(S1):82−88.

    YANG J W, ZHANG J S, ZHU X F, et al. Random forest applied for dimension reduction and classification in hyperspectral data [J]. Journal of Beijing Normal University(Natural Science), 2015, 51(S1): 82−88.(in Chinese)
    [17]
    刘会芬, 杨英宝, 于双, 等. 遥感图像不同融合方法的适应性评价: 以ZY-3和Landsat8图像为例 [J]. 国土资源遥感, 2014, 26(4):63−70. doi: 10.6046/gtzyyg.2014.04.11

    LIU H F, YANG Y B, YU S, et al. Adaptability evaluation of different fusion methods on ZY-3 and Landsat8 images [J]. Remote Sensing for Land & Resources, 2014, 26(4): 63−70.(in Chinese) doi: 10.6046/gtzyyg.2014.04.11
    [18]
    胥兵, 方臣. ZY-102 C星图像与ETM+图像融合方法及效果评价 [J]. 国土资源遥感, 2014, 26(3):80−85. doi: 10.6046/gtzyyg.2014.03.13

    XU B, FANG C. Data fusion methods of ZY-102 C and ETM+ images and effect evaluation [J]. Remote Sensing for Land & Resources, 2014, 26(3): 80−85.(in Chinese) doi: 10.6046/gtzyyg.2014.03.13
    [19]
    张小利, 李雄飞, 李军. 融合图像质量评价指标的相关性分析及性能评估 [J]. 自动化学报, 2014, 40(2):306−315.

    ZHANG X L, LI X F, LI J. Validation and correlation analysis of metrics for evaluating performance of image fusion [J]. Acta Automatica Sinica, 2014, 40(2): 306−315.(in Chinese)
    [20]
    张焕雪, 李强子, 文宁, 等. 农作物种植面积遥感估算的影响因素研究 [J]. 国土资源遥感, 2015, 27(4):54−61. doi: 10.6046/gtzyyg.2015.04.09

    ZHANG H X, LI Q Z, WEN N, et al. Important factors affecting crop acreage estimation based on remote sensing image classification technique [J]. Remote Sensing for Land & Resources, 2015, 27(4): 54−61.(in Chinese) doi: 10.6046/gtzyyg.2015.04.09
    [21]
    刘佳, 王利民, 滕飞, 等. RapidEye卫星红边波段对农作物面积提取精度的影响 [J]. 农业工程学报, 2016, 32(13):140−148. doi: 10.11975/j.issn.1002-6819.2016.13.020

    LIU J, WANG L M, TENG F, et al. Impact of red-edge waveband of RapidEye satellite on estimation accuracy of crop planting area [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 140−148.(in Chinese) doi: 10.11975/j.issn.1002-6819.2016.13.020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (1158) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return